GW5-Like, a homolog of GW5, negatively regulates grain width, weight and salt resistance in rice
- PMID: 30450718
- DOI: 10.1111/jipb.12745
GW5-Like, a homolog of GW5, negatively regulates grain width, weight and salt resistance in rice
Abstract
Grain size is an important determinant of yield potential in crops. We previously demonstrated that natural mutations in the regulatory sequences of qSW5/GW5 confer grain width diversity in rice. However, the biological function of a GW5 homolog, named GW5-Like (GW5L), remains unknown. In this study, we report on GW5L knockout mutants in Kitaake, a japonica cultivar (cv.) considered to have a weak gw5 variant allele that confers shorter and wider grains. GW5L is evenly expressed in various tissues, and its protein product is localized to the plasma membrane. Biochemical assays verified that GW5L functions in a similar fashion to GW5. It positively regulates brassinosteroid (BR) signaling through repression of the phosphorylation activity of GSK2. Genetic data show that GW5L overexpression in either Kitaake or a GW5 knockout line, Kasaorf3 (indica cv. Kasalath background), causes more slender, longer grains relative to the wild-type. We also show that GW5L could confer salt stress resistance through an association with calmodulin protein OsCaM1-1. These findings identify GW5L as a negative regulator of both grain size and salt stress tolerance, and provide a potential target for breeders to improve grain yield and salt stress resistance in rice.
© 2018 Institute of Botany, Chinese Academy of Sciences.
References
REFERENCES
-
- Abel S, Savchenko T, Levy M (2005) Genome-wide comparative analysis of the IQD gene families in Arabidopsis thaliana and Oryza sativa. BMC Evol Biol 5: 72
-
- Aida M, Beis D, Heidstra R, Willemsen V, Blilou I, Galinha C, Nussaume L, Noh YS, Amasino R, Scheres B (2004) The PLETHORA genes mediate patterning of the Arabidopsis root stem cell niche. Cell 119: 109-120
-
- Bart R, Chern M, Park CJ, Bartley L, Ronald PC (2006) A novel system for gene silencing using siRNAs in rice leaf and stem-derived protoplasts. Plant Methods 2: 13
-
- Bernhardt C, Lee MM, Gonzalez A, Zhang F, Lloyd A, Schiefelbein J (2003) The bHLH genes GLABRA3 (GL3) and ENHANCER OF GLABRA3 (EGL3) specify epidermal cell fate in the Arabidopsis root. Development 130: 6431-6439
-
- Briggs GC, Osmont KS, Shindo C, Sibout R, Hardtke CS (2006) Unequal genetic redundancies in Arabidopsis-a neglected phenomenon? Trends Plant Sci 11: 492-498
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
