Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Apr-Jun;21(2):80-84.

Urine metabolomic profile in neonates with hypoxic-ischemic encephalopa-thy

Affiliations

Urine metabolomic profile in neonates with hypoxic-ischemic encephalopa-thy

K Sarafidis et al. Hippokratia. 2017 Apr-Jun.

Abstract

Background: Metabolomics could provide valuable insights into hypoxemic-ischemic encephalopathy (HIE) revealing new disease-associated biochemical derangements. The study aimed to investigate urine metabolic changes in neonates with HIE compared to healthy controls, using targeted liquid chromatography-tandem mass spectrometry (LC-MS/MS).

Patients and methods: In this prospective, single-center study we enrolled neonates born at ≥ 36 weeks gestation with HIE (HIE group) and healthy controls (control group). We collected urine samples for metabolomic analysis on days one, three, and nine of life.

Results: Twenty-one full-term newborns were studied, 13 in the HIE group and eight in the control group. Six of the affected neonates had moderate/severe HIE and seven mild HIE. Therapeutic hypothermia was applied only in four neonates with moderate/severe HIE. Multivariate and univariate statistical analysis showed a clear separation between the HIE and the control groups. Discriminant metabolites involved pyruvic acid, amino acids, acylcarnitines, inositol, kynurenine, hippuric acid, and vitamins.

Conclusions: We have identified a specific metabolic profile in neonates with HIE, adding to the existing knowledge on the disease biochemistry that may potentially help in biomarker development. HIPPOKRATIA 2017, 21(2): 80-84.

Keywords: brain injury; encephalopathy; metabolomics; neonate; perinatal asphyxia.

PubMed Disclaimer

Figures

Figure 1
Figure 1. Partial least squares-Discriminant Analysis (PLSDA) scores plots in the first two components [t1] and [t2] on days 1, 3 and 9 with the permutation tests performed to validate the grouping in corresponding insets (bottom right of each plot). Hypoxic-ischemic encephalopathy (HIE) samples are differentiated from controls in days 1 and 3, but group separation is not valid on day 9 (permutation fails).

References

    1. Tudehope D, Papadimos E, Gibbons K. Twelve-year review of neonatal deaths in the delivery room in a perinatal tertiary centre. J Paediatr Child Health. 2013;49:E40–E45. - PubMed
    1. Palme-Kilander C. Methods of resuscitation in low-Apgar-score newborn infants--a national survey. Acta Paediatr. 1992;81:739–744. - PubMed
    1. Lee AC, Kozuki N, Blencowe H, Vos T, Bahalim A, Darmstadt GL, et al. Intrapartum-related neonatal encephalopathy incidence and impairment at regional and global levels for 2010 with trends from 1990. Pediatr Res. 2013;74 Suppl 1:50–72. - PMC - PubMed
    1. Jacobs SE, Berg M, Hunt R, Tarnow-Mordi WO, Inder TE, Davis PG. Cooling for newborns with hypoxic ischaemic encephalopathy. Cochrane Database Syst Rev. 2013;1:CD003311. - PMC - PubMed
    1. Bhatti A, Kumar P. Systemic effects of perinatal asphyxia. Indian J Pediatr. 2014;81:231–233. - PubMed

LinkOut - more resources