Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2019;36(2):177-202.
doi: 10.14573/altex.1808022. Epub 2018 Nov 19.

Non-animal models in dermatological research

Affiliations
Free article
Review

Non-animal models in dermatological research

Elena Dellambra et al. ALTEX. 2019.
Free article

Abstract

Despite widely used for basic and preclinical studies in dermatology, available animal models only partly recapitulate human skin features often leading to disappointing outputs when preclinical results are translated to the clinic. Therefore, the need to develop alternative, non-animal models is widely recognized to more closely recapitulate human skin pathophysiology and to address the pressing ethical demand of reducing the number of animals used for research purposes, following the globally accepted 3Rs principle (Replacement, Reduction and Refinement). Skin is the outermost organ of the body, and, as such, easily accessible. Different skin cell types can be propagated in vitro and skin can be reconstructed for therapeutic transplantation as well as for in vitro modeling of physiopathological conditions. Bioengineered skin substitutes have been developed and evolved from elementary to complex systems, more and more closely resembling complete skin architecture and biological responses. In silico analyses take advantage from the huge amount of data already available from human studies for identifying and modeling molecular pathways involved in skin pathophysiology without further animal testing. The present review recapitulates the available non-animal models for dermatological research and sheds lights on their prospective technological evolution.

Keywords: skin equivalents; cutaneous diseases; in silico analyses.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources