The 9S RNA precursor of Escherichia coli 5S RNA has three structural domains: implications for processing
- PMID: 3045757
- PMCID: PMC338420
- DOI: 10.1093/nar/16.15.7457
The 9S RNA precursor of Escherichia coli 5S RNA has three structural domains: implications for processing
Abstract
The secondary structure of the 9S RNA precursor to ribosomal 5S RNA in Escherichia coli has been determined using chemical reagents and ribonucleases in combination with a reverse transcription procedure. The 9S RNA precursor was generated in vitro by T7 RNA polymerase, and the rrnB operon terminator, T1, was able to terminate the in vitro transcript. The secondary structure model exhibits three structural domains corresponding to a 5' region, a mature region and a terminator region. The mature domain is structurally identical to 5S RNA, and the ribosomal proteins L18 and L25 are able to bind to the precursor. The processing endoribonuclease RNase E cleaves between the structural domains. Moreover, an intramolecular refolding of the nascent transcript must take place if the current view of RNase III processing stems is correct.
Similar articles
-
Exploration of the L18 binding site on 5S RNA by deletion mutagenesis.Nucleic Acids Res. 1988 Nov 25;16(22):10717-32. doi: 10.1093/nar/16.22.10717. Nucleic Acids Res. 1988. PMID: 3060848 Free PMC article.
-
Structural analyses of E. coli 5S RNA fragments, their associates and complexes with proteins L18 and L25.Nucleic Acids Res. 1982 Feb 11;10(3):947-65. doi: 10.1093/nar/10.3.947. Nucleic Acids Res. 1982. PMID: 6278442 Free PMC article.
-
Structural requirements for the processing of Escherichia coli 5 S ribosomal RNA by RNase E in vitro.J Mol Biol. 1992 Dec 20;228(4):1078-90. doi: 10.1016/0022-2836(92)90316-c. J Mol Biol. 1992. PMID: 1474579
-
RNA processing in a unicellular microorganism: implications for eukaryotic cells.Prog Nucleic Acid Res Mol Biol. 1983;30:1-40. doi: 10.1016/s0079-6603(08)60682-0. Prog Nucleic Acid Res Mol Biol. 1983. PMID: 6364230 Review. No abstract available.
-
Biosynthesis of transfer RNA.CRC Crit Rev Biochem. 1981;9(4):253-92. doi: 10.3109/10409238109105436. CRC Crit Rev Biochem. 1981. PMID: 6258859 Review. No abstract available.
Cited by
-
Regulation of ribonuclease III processing by double-helical sequence antideterminants.Proc Natl Acad Sci U S A. 1997 Dec 9;94(25):13437-41. doi: 10.1073/pnas.94.25.13437. Proc Natl Acad Sci U S A. 1997. PMID: 9391043 Free PMC article.
-
Rapid functional activation of horizontally transferred eukaryotic intron-containing genes in the bacterial recipient.Nucleic Acids Res. 2024 Aug 12;52(14):8344-8355. doi: 10.1093/nar/gkae628. Nucleic Acids Res. 2024. PMID: 39011898 Free PMC article.
-
Intrinsic termination of T7 RNA polymerase mediated by either RNA or DNA.EMBO J. 1996 Sep 2;15(17):4767-74. EMBO J. 1996. PMID: 8887568 Free PMC article.
-
Functional interaction of heat shock protein GroEL with an RNase E-like activity in Escherichia coli.Proc Natl Acad Sci U S A. 1993 Jan 1;90(1):277-81. doi: 10.1073/pnas.90.1.277. Proc Natl Acad Sci U S A. 1993. PMID: 8093559 Free PMC article.
-
Chemical and computer probing of RNA structure.Prog Nucleic Acid Res Mol Biol. 1996;53:131-96. doi: 10.1016/s0079-6603(08)60144-0. Prog Nucleic Acid Res Mol Biol. 1996. PMID: 8650302 Free PMC article. Review.
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases