Physical mapping of large DNA by chromosome fragmentation
- PMID: 3045811
- PMCID: PMC281898
- DOI: 10.1073/pnas.85.16.6027
Physical mapping of large DNA by chromosome fragmentation
Abstract
A technique is described for physically positioning any cloned DNA on a native or artificial Saccharomyces cerevisiae chromosome. The technique involves splitting a chromosome at a specific site by transformation with short linear molecules containing the cloned DNA at one end and telomeric sequences at the other. Recombination between the end of the linear molecules and homologous chromosomal sequences gives rise to chromosome fragments comprising all sequences distal or proximal to the mapping site depending on the orientation of the cloned DNA. The recombinant products are recovered by screening for stabilization of a suppressor tRNA on the linear molecules using a colony color assay. The cloned DNA is positioned relative to the chromosome ends by sizing the chromosomal fragments using alternating contour-clamped homogeneous electric field gel electrophoresis. Application of this technique to organisms other than S. cerevisiae and to the analysis of exogenous DNA cloned in yeast is discussed.
Similar articles
-
A polymerase chain reaction-mediated yeast artificial chromosome-splitting technology for generating targeted yeast artificial chromosomes subclones.Methods Mol Biol. 2006;349:103-15. doi: 10.1385/1-59745-158-4:103. Methods Mol Biol. 2006. PMID: 17071977
-
Monitoring of DNA Replication and DNA Double-Strand Breaks in Saccharomyces cerevisiae by Pulsed-Field Gel Electrophoresis (PFGE).Methods Mol Biol. 2020;2119:123-133. doi: 10.1007/978-1-0716-0323-9_11. Methods Mol Biol. 2020. PMID: 31989520
-
Nested chromosomal fragmentation in yeast using the meganuclease I-Sce I: a new method for physical mapping of eukaryotic genomes.Nucleic Acids Res. 1992 Nov 11;20(21):5625-31. doi: 10.1093/nar/20.21.5625. Nucleic Acids Res. 1992. PMID: 1333585 Free PMC article.
-
Determination of chromosome ploidy in yeast.Methods Mol Biol. 1996;53:205-16. doi: 10.1385/0-89603-319-8:205. Methods Mol Biol. 1996. PMID: 8924982 Review. No abstract available.
-
Mapping replication origins in yeast chromosomes.Bioessays. 1991 Jul;13(7):317-22. doi: 10.1002/bies.950130702. Bioessays. 1991. PMID: 1759974 Review.
Cited by
-
Effect of nuclear architecture on the efficiency of double-strand break repair.Nat Cell Biol. 2013 Jun;15(6):694-9. doi: 10.1038/ncb2745. Epub 2013 May 5. Nat Cell Biol. 2013. PMID: 23644470
-
A synthetic lethal screen identifies SLK1, a novel protein kinase homolog implicated in yeast cell morphogenesis and cell growth.Mol Cell Biol. 1992 Mar;12(3):1162-78. doi: 10.1128/mcb.12.3.1162-1178.1992. Mol Cell Biol. 1992. PMID: 1545797 Free PMC article.
-
Mitotic transmission of artificial chromosomes in cdc mutants of the yeast, Saccharomyces cerevisiae.Genetics. 1990 Aug;125(4):763-74. doi: 10.1093/genetics/125.4.763. Genetics. 1990. PMID: 2204582 Free PMC article.
-
The I-CeuI endonuclease recognizes a sequence of 19 base pairs and preferentially cleaves the coding strand of the Chlamydomonas moewusii chloroplast large subunit rRNA gene.Nucleic Acids Res. 1992 Dec 11;20(23):6401-7. doi: 10.1093/nar/20.23.6401. Nucleic Acids Res. 1992. PMID: 1475201 Free PMC article.
-
Telomere-associated chromosome breakage in fission yeast results in variegated expression of adjacent genes.EMBO J. 1994 Aug 15;13(16):3801-11. doi: 10.1002/j.1460-2075.1994.tb06691.x. EMBO J. 1994. PMID: 8070408 Free PMC article.
References
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources