Adaptive stimulus selection for multi-alternative psychometric functions with lapses
- PMID: 30458512
- PMCID: PMC6222824
- DOI: 10.1167/18.12.4
Adaptive stimulus selection for multi-alternative psychometric functions with lapses
Abstract
Psychometric functions (PFs) quantify how external stimuli affect behavior, and they play an important role in building models of sensory and cognitive processes. Adaptive stimulus-selection methods seek to select stimuli that are maximally informative about the PF given data observed so far in an experiment and thereby reduce the number of trials required to estimate the PF. Here we develop new adaptive stimulus-selection methods for flexible PF models in tasks with two or more alternatives. We model the PF with a multinomial logistic regression mixture model that incorporates realistic aspects of psychophysical behavior, including lapses and multiple alternatives for the response. We propose an information-theoretic criterion for stimulus selection and develop computationally efficient methods for inference and stimulus selection based on adaptive Markov-chain Monte Carlo sampling. We apply these methods to data from macaque monkeys performing a multi-alternative motion-discrimination task and show in simulated experiments that our method can achieve a substantial speed-up over random designs. These advances will reduce the amount of data needed to build accurate models of multi-alternative PFs and can be extended to high-dimensional PFs that would be infeasible to characterize with standard methods.
Figures










Similar articles
-
Bayesian adaptive stimulus selection for dissociating models of psychophysical data.J Vis. 2018 Aug 1;18(8):12. doi: 10.1167/18.8.12. J Vis. 2018. PMID: 30372761
-
Bayesian inference for psychometric functions.J Vis. 2005 May 27;5(5):478-92. doi: 10.1167/5.5.8. J Vis. 2005. PMID: 16097878
-
Tracking of nociceptive thresholds using adaptive psychophysical methods.Behav Res Methods. 2014 Mar;46(1):55-66. doi: 10.3758/s13428-013-0368-4. Behav Res Methods. 2014. PMID: 23835651 Clinical Trial.
-
Inference for psychometric functions in the presence of nonstationary behavior.J Vis. 2011 May 23;11(6):16. doi: 10.1167/11.6.16. J Vis. 2011. PMID: 21606382
-
Statistical approaches to identifying lapses in psychometric response data.Psychon Bull Rev. 2021 Oct;28(5):1433-1457. doi: 10.3758/s13423-021-01876-2. Epub 2021 Apr 6. Psychon Bull Rev. 2021. PMID: 33825094 Review.
Cited by
-
Efficient inference for time-varying behavior during learning.Adv Neural Inf Process Syst. 2018 Dec;31:5695-5705. Adv Neural Inf Process Syst. 2018. PMID: 31244514 Free PMC article.
-
Extracting the dynamics of behavior in sensory decision-making experiments.Neuron. 2021 Feb 17;109(4):597-610.e6. doi: 10.1016/j.neuron.2020.12.004. Epub 2021 Jan 6. Neuron. 2021. PMID: 33412101 Free PMC article.
-
Active Learning for Discrete Latent Variable Models.Neural Comput. 2024 Feb 16;36(3):437-474. doi: 10.1162/neco_a_01646. Neural Comput. 2024. PMID: 38363661 Free PMC article.
-
TORONTO: A trial-oriented multidimensional psychometric testing algorithm.J Vis. 2024 Jul 2;24(7):2. doi: 10.1167/jov.24.7.2. J Vis. 2024. PMID: 38953860 Free PMC article.
-
Thermal Perceptual Thresholds are typical in Autism Spectrum Disorder but Strongly Related to Intra-individual Response Variability.Sci Rep. 2019 Aug 29;9(1):12595. doi: 10.1038/s41598-019-49103-2. Sci Rep. 2019. PMID: 31467358 Free PMC article.
References
-
- Bak J. H, Choi J. Y, Akrami A, Witten I. B, Pillow J. W. Adaptive optimal training of animal behavior. In: Lee D. D, Sugiyama M, Luxburg U. V, Guyon I, Garnett R, editors. Advances in neural information processing systems 29. Red Hook, NY: Curran Associates, Inc; (2016). pp. 1947–1955. (Eds.)
-
- Barthelmé S, Mamassian P. A flexible Bayesian method for adaptive measurement in psychophysics. arXiv:0809.0387. (2008). pp. 1–28.
-
- Bishop C. M. Pattern recognition and machine learning. New York: Springer; (2006).
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources