Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Nov 20;16(1):93.
doi: 10.1186/s12951-018-0421-7.

Ni-hemin metal-organic framework with highly efficient peroxidase catalytic activity: toward colorimetric cancer cell detection and targeted therapeutics

Affiliations

Ni-hemin metal-organic framework with highly efficient peroxidase catalytic activity: toward colorimetric cancer cell detection and targeted therapeutics

Negar Alizadeh et al. J Nanobiotechnology. .

Abstract

Background: Given the great benefits of artificial enzymes, a simple approach is proposed via assembling of Ni2+ with hemin for synthesis of Ni-hemin metal-organic-frameworks (Ni-hemin MOFs) mimic enzyme. The formation of the Ni-hemin MOFs was verified by scanning electron microscopy, Transmission electron microscopy, X-ray powder diffraction, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, Energy-dispersive X-ray spectroscopy and UV-vis absorption spectroscopy. This novel nanocomposite exhibited surprising peroxidase like activity monitored by catalytic oxidation of a typical peroxidase substrate, 3,3,5,5'-tetramethylbenzidine, in the presence of H2O2. By using folic acid conjugated MOF nanocomposite as a recognition element, we develop a colorimetric assay for the direct detection of cancer cells.

Results: The proposed sensor presented high sensitivity and selectivity for the detection of human breast cancer cells (MCF-7) and Human Caucasian gastric adenocarcinoma. By measuring UV-vis absorbance response, a wide detection range from 50 to 105 cells/mL with a detection limit as low as 10 cells/mLwas reached for MCF-7 cells. We further discuss therapeutics efficiency of Ni-hemin MOFs in the presence of H2O2 and ascorbic acid. Peroxidase-mimic Ni-hemin MOFs as reactive oxygen species which could damage MCF-7 cancer cells, however for normal cells (human embryonic kidney HEK 293 cells) killing effect was negligible.

Conclusions: Based on these behaviors, the developed method offers a fast, easy and cheap assay for the interest in future diagnostic and treatment application.

Keywords: H2O2; MCF-7 and Caucasian gastric adenocarcinoma cancer cells; Ni-hemin MOF; Peroxidase activity; TMB; Therapeutics efficiency.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
ai SEM image and jm TEM image of Ni-hemin MOF nanocomposite with different magnitude
Fig. 2
Fig. 2
a XRD patterns of the Ni-hemin MOF nanocomposite, b XPS survey, c Ni 2p spectra and d Fe 2p spectra of the Ni-hemin MOF nanocomposite
Fig. 3
Fig. 3
A EDS spectra, B TGA curve, and C FTIR of Ni-hemin MOF nanocomposite
Fig. 4
Fig. 4
a N2 adsorption–desorption isotherm and b pore distribution
Fig. 5
Fig. 5
A UV–vis and photographs of (a) Ni-hemin MOF solution (b) Ni-hemin MOF +TMB + H2O2 (c) Ni-hemin MOF +TMB + H2O2 +H2SO4, B Time-dependent UV–vis spectral changes of TMB solution with H2O2 catalyzed by NiO MOF, C Time-dependent absorbance changes of (a) Ni-hemin MOF solution (b) TMB + H2O2 (c) Ni-hemin MOF +TMB + H2O2 at 652 nm, and D Time-dependent absorbance changes of TMB solution with H2O2 at 652 nm in the presence of different concentrations of NiO MOF
Fig. 6
Fig. 6
Steady-state kinetic analyses using the Michaelis–Menten model and Lineweaver–Burk model (insets) for Ni-hemin MOF nanocomposite by a varying the concentration of TMB with a fixed amount of H2O2 and b varying the concentration of H2O2 with a fixed amount of TMB
Fig. 7
Fig. 7
Schematic illustration of peroxidase activity of Ni-hemin MOF for cancer cell detection
Fig. 8
Fig. 8
a Target-directed cancer cell detection b Uu-vis absorbance changes at 450 nm upon analyzing different numbers of MCF-7 cells (1) 5 × 101, (2) 1 × 102, (3) 2 × 102, (4) 4 × 102, (5) 8 × 102, (6) 1.6 × 103, (7) 3.2 × 103 (8) 6.4 × 103, (9) 1.3 × 104, (10) 2.5 × 104, (11) 5 × 104, and (12) 1 × 105, c the absorption intensity changes at 450 nm and photographs of the well plates (inset) with corresponding different numbers (50−1 × 105) of MCF-7
Fig. 9
Fig. 9
a Cell viability tests by MTT assay for MCF-7 cells in the presence of (a) Ni-hemin MOF with H2O2 (90 or 160 μM) and b Ni-hemin MOF with AA (1 or 2 mM). c HEK-293 cell viability upon treatment by Ni-hemin MOF with H2O2 (90 or 160 μM) and d Ni-hemin MOF with AA (1 or 2 mM)

References

    1. Alizadeh N, Hallaj R, Salimi A. A highly sensitive electrochemical immunosensor for hepatitis B virus surface antigen detection based on Hemin/G-quadruplex horseradish peroxidase-mimicking DNAzyme-signal amplification. Biosens Bioelectron. 2017;94:184–192. doi: 10.1016/j.bios.2017.02.039. - DOI - PubMed
    1. Alizadeh N, Hallaj R, Salimi A. Dual amplified electrochemical immunosensor for hepatitis B virus surface antigen detection using hemin/G-quadruplex immobilized onto Fe3O4-AuNPs or (Hemin-Amino-rGO-Au) nanohybrid. Electroanalysis. 2018;30:402–414. doi: 10.1002/elan.201700727. - DOI
    1. Alizadeh N, Salimi A, Hallaj R. Mimicking peroxidase activity of Co2 (OH)2 CO3-CeO2 nanocomposite for smartphone based detection of tumor marker using paper-based microfluidic immunodevice. Talanta 2018. - PubMed
    1. Jia H, Yang D, Han X, Cai J, Liu H, He W. Peroxidase-like activity of the Co 3 O 4 nanoparticles used for biodetection and evaluation of antioxidant behavior. Nanoscale. 2016;8:5938–5945. doi: 10.1039/C6NR00860G. - DOI - PubMed
    1. Gao L, Zhuang J, Nie L, Zhang J, Zhang Y, Gu N, Wang T, Feng J, Yang D, Perrett S. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol. 2007;2:577. doi: 10.1038/nnano.2007.260. - DOI - PubMed

MeSH terms

LinkOut - more resources