Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2018 Nov 20;20(1):144.
doi: 10.1186/s13058-018-1066-z.

Statin drugs to reduce breast cancer recurrence and mortality

Affiliations
Review

Statin drugs to reduce breast cancer recurrence and mortality

Colin H Beckwitt et al. Breast Cancer Res. .

Abstract

Epidemiologic studies have, variably, shown the concomitant use of statin drugs to be beneficial to cancer outcomes. Statin drugs have been FDA approved for three decades for the treatment of high cholesterol and atherosclerotic coronary artery disease and are widely used. This has engendered studies as to their influence on concomitant diseases, including cancers. In this context, statin use has been correlated, variably, with a decrease in deaths from breast cancer. However, there is no extant model for this effect, and the extent of efficacy is open to question.The overarching goal of this article is to communicate to the reader of the potential of statins to reduce breast cancer progression and mortality. This is the use as a secondary prevention measure, and not as a therapy to directly counter active cancer. First, salient aspects of statin pharmacology, as relates to cardiovascular disease, will be discussed. Second, the basic and clinical research studies that investigate statin usage in breast cancer will be presented. Additionally, statin effects in other cancer types will be included for context. Finally, proposals for future basic and clinical research studies to determine the role of statins in breast cancer management will be presented.

Keywords: Breast cancer; Lipophilicity; Metastasis; Prenylation; Secondary prevention; Statins.

PubMed Disclaimer

Conflict of interest statement

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
The cholesterol biosynthesis pathway. Statins block HMG-CoA reductase (HMGCR, shown in blue) to shut down the cholesterol biosynthetic pathway. In addition to cholesterol, other downstream mediators are affected, such as farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP)
Fig. 2
Fig. 2
Proposed model for statin action in breast cancer. a The breast cancer metastatic cascade. Statins (red) block emergence of dormant breast cancer cells at the site of micrometastasis to prevent their emergence to form clinically evident metastases. b Statins (red) block HMG-CoA reductase (HMGCR) to decrease the number of prenylation groups (Pr), such as farnesyl pyrophosphate and geranylgeranyl pyrophosphate, available for prenylating small G proteins, such as Ras (shown), Rac, and RhoA. Decreased prenylation reduces membrane tethering of these G proteins, which reduces downstream proliferative and pro-EMT signaling. Drawing made using images from Servier Medical Art [101]

References

    1. Endo A. A historical perspective on the discovery of statins. Proc Japan Acad Ser B. 2010;86(5):484–493. doi: 10.2183/pjab.86.484. - DOI - PMC - PubMed
    1. Siperstein MD, Fagan VM. Feedback control of mevalonate synthesis by dietary cholesterol. J Biol Chem. 1966;241(3):602–609. - PubMed
    1. Tobert JA. Lovastatin and beyond: the history of the HMG-CoA reductase inhibitors. Nat Rev Drug Discov. 2003;2(7):517–526. doi: 10.1038/nrd1112. - DOI - PubMed
    1. Gazzerro P, Proto MC, Gangemi G, et al. Pharmacological actions of statins: a critical appraisal in the management of cancer. Pharmacol Rev. 2012;64(1):102–146. doi: 10.1124/pr.111.004994. - DOI - PubMed
    1. McKenney James M., Ganz Peter, Wiggins Barbara S., Saseen Joseph S. Clinical Lipidology. 2009. Statins; pp. 253–280.

Publication types

MeSH terms

Substances