Improvement in hypercapnia does not predict survival in COPD patients on chronic noninvasive ventilation
- PMID: 30464445
- PMCID: PMC6219270
- DOI: 10.2147/COPD.S169951
Improvement in hypercapnia does not predict survival in COPD patients on chronic noninvasive ventilation
Abstract
Purpose: It has recently been shown that chronic noninvasive ventilation (NIV) improves a number of outcomes including survival, in patients with stable hypercapnic COPD. However, the mechanisms responsible for these improved outcomes are still unknown. The aim of the present study was to identify parameters associated with: 1) an improved arterial partial pressure of carbon dioxide (PaCO2) and 2) survival, in a cohort of hypercapnic COPD patients treated with chronic NIV.
Patients and methods: Data from 240 COPD patients treated with chronic NIV were analyzed. Predictors for the change in PaCO2 and survival were investigated using multivariate linear and Cox regression models, respectively.
Results: A higher level of bicarbonate before NIV initiation, the use of higher inspiratory ventilator pressures, the presence of anxiety symptoms, and NIV initiated following an exacerbation compared to NIV initiated in stable disease were associated with a larger reduction in PaCO2. A higher body mass index, a higher FEV1, a lower bicarbonate before NIV initiation, and younger age and NIV initiation in stable condition were independently associated with better survival. The change in PaCO2 was not associated with survival, neither in a subgroup of patients with a PaCO2 >7.0 kPa before the initiation of NIV.
Conclusion: Patients with anxiety symptoms and a high bicarbonate level at NIV initiation are potentially good responders in terms of an improvement in hypercapnia. Also, higher inspiratory ventilator pressures are associated with a larger reduction in PaCO2. However, the improvement in hypercapnia does not seem to be associated with an improved survival and emphasizes the need to look beyond PaCO2 when considering NIV initiation.
Keywords: bicarbonate; carbon dioxide; chronic obstructive pulmonary disease; exacerbation; home mechanical ventilation; respiratory insufficiency.
Conflict of interest statement
Disclosure PJW reports grants and personal fees from Philips Respironics, RESMED, and VIVISOL, and grants from MediqTefa and Air Liquide, outside the submitted work. MD reports grants and personal fees from Philips Respironics, grants from RESMED Ltd, and Breas Medical, and personal fees from Vivisol BV, outside the submitted work. Funding sources had no involvement in the study design and in the collection, analysis, and interpretation of data. The other authors report no conflicts of interest in this work.
Figures
References
-
- Chapman KR, Mannino DM, Soriano JB, et al. Epidemiology and costs of chronic obstructive pulmonary disease. Eur Respir J. 2006;27(1):188–207. - PubMed
-
- Mannino DM. Epidemiology and global impact of chronic obstructive pulmonary disease. Semin Respir Crit Care Med. 2005;26(2):204–210. - PubMed
-
- Dreher M, Storre JH, Schmoor C, Windisch W. High-intensity versus low-intensity non-invasive ventilation in patients with stable hypercapnic COPD: a randomised crossover trial. Thorax. 2010;65(4):303–308. - PubMed
-
- Windisch W, Storre JH, Köhnlein T. Nocturnal non-invasive positive pressure ventilation for COPD. Expert Rev Respir Med. 2015;9(3):295–308. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical
