Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2018;18(20):1769-1791.
doi: 10.2174/1568026619666181120142141.

Application of Computational Techniques to Unravel Structure-Function Relationship and their Role in Therapeutic Development

Affiliations
Review

Application of Computational Techniques to Unravel Structure-Function Relationship and their Role in Therapeutic Development

Tara Chand Yadav et al. Curr Top Med Chem. 2018.

Abstract

Application of computational tools and techniques has emerged as an invincible instrument to unravel the structure-function relationship and offered better mechanistic insights in the designing and development of new drugs along with the treatment regime. The use of in silico tools equipped modern chemist with armamentarium of extensive methods to meticulously comprehend the structural tenacity of receptor-ligand interactions and their dynamics. In silico methods offers a striking property of being less resource intensive and economically viable as compared to experimental evaluation. These techniques have proved their mettle in the designing of potential lead compounds to combat life-threatening diseases such as AIDS, cancer, tuberculosis, malaria, etc. In the present scenario, computer-aided drug designing has ascertained an essential and indispensable gizmo in therapeutic development. This review will present a brief outline of computational methods used at different facets of drug designing and its latest advancements. The aim of this review article is to briefly highlight the methodologies and techniques used in structure-based/ ligand-based drug designing viz., molecular docking, pharmacophore modeling, density functional theory, protein-hydration and molecular dynamics simulation which helps in better understanding of macromolecular events and complexities.

Keywords: DFT; Docking; MD simulation; Pharmacophore modeling; Protein hydration; Structure biology..

PubMed Disclaimer

LinkOut - more resources