Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Jun;41(15):1912-1922.
doi: 10.1080/09593330.2018.1551939. Epub 2018 Dec 5.

Mineral pollutants removal through immobilized microalgae-bacterial flocs in a multitrophic microreactor

Affiliations

Mineral pollutants removal through immobilized microalgae-bacterial flocs in a multitrophic microreactor

Olfa Beji et al. Environ Technol. 2020 Jun.

Abstract

Microalgae-bacterial flocs (MaB-flocs) immobilization technique using polyvinyl alcohol (PVA) crosslinked with sodium alginate represent a novel approach for sustainable pollutants removal. The present work was performed to evaluate the performance of a multitrophic batch reactor at microscale for treating two synthetic wastewater solutions prepared with two different initial Chemical Oxygen Demand (COD): 200 mg.L-1 and 450 mg.L-1, respectively. Three MaB-flocs concentrations were entrapped into PVA-alginate beads: C1 (2%, v/v), C2 (5%, v/v) and C3 (10%, v/v), without O2 supply, during three periods 2, 4 and 6 days of batch incubation. PVA-alginate beads containing the highest concentration C3 of MaB-flocs improved the performance of the microreactor to remove significantly NH4+ and PO43- of about 61% and 82%, respectively, from wastewater more than two other concentrations used. This result confirms that C3 of MaB-flocs displays not only a good potential for nutrients removals but also the highest MaB-flocs morphological progression after 6 days of treatment with the highest COD of 450 mg.L-1. The feasibility of the PVA-alginate for cells immobilization, investigated through microscopy analysis, reveals that the evolution of multicellularity in MaB-flocs, for all experiments.

Keywords: Microalgae-bacterial flocs; PVA-alginate immobilization; multicellularity evolution; multitrophic batch microreactor; sustainable pollutants removal.

PubMed Disclaimer

LinkOut - more resources