Temporal Frame of Immune Cell Infiltration during Heart Failure Establishment: Lessons from Animal Models
- PMID: 30467294
- PMCID: PMC6321195
- DOI: 10.3390/ijms19123719
Temporal Frame of Immune Cell Infiltration during Heart Failure Establishment: Lessons from Animal Models
Abstract
Heart failure (HF) is a cardiovascular syndrome characterized by maladaptive changes with an underlying inflammatory mediated pathogenesis. Nevertheless, current therapy is aimed at the heart workload and neurohormonal axis; thus, prognosis remains poor. To continue improving treatment, we rely on murine models for a better understanding of HF pathophysiology. Among them, pressure overload HF (PO-HF) animal models are a common strategy. Development of PO-HF is characterized by monocyte infiltration, which orchestrates a cascade of events leading to sustained inflammation and maladaptive changes. Here, we divide the PO-HF model progression into four phases and describe the inflammatory, structural, and gene expression profiles. This division is relevant due to its similarities with clinical hypertensive heart disease progression to HF. Evidence shows improvement in hemodynamic and other local parameters by altering the inflammatory response in a specific immune response at a specific point of time. Thus, it is relevant to focus on the time-dependent immune response interaction in order to provide more effective therapy. This review summarizes the pathogenesis of PO-HF murine models, highlighting the inflammatory events in a time frame view. By this approach, we expect to provide researchers with a better understanding of the intertwining time-dependent events that occur in PO-HF.
Keywords: animal models; heart failure; inflammation; pressure overload.
Conflict of interest statement
The authors declare no conflict of interest.
Figures



References
-
- Ponikowski P., Voors A.A., Anker S.D., Bueno H., Cleland J.G.F., Coats A.J.S., Falk V., González-Juanatey J.R., Harjola V.-P., Jankowska E.A., et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC)Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur. Heart J. 2016;37:2129–2200. doi: 10.1093/eurheartj/ehw128. - DOI - PubMed
-
- Conrad N., Judge A., Tran J., Mohseni H., Hedgecott D., Crespillo A.P., Allison M., Hemingway H., Cleland J.G., McMurray J.J.V., et al. Temporal trends and patterns in heart failure incidence: A population-based study of 4 million individuals. Lancet. 2018;391:572–580. doi: 10.1016/S0140-6736(17)32520-5. - DOI - PMC - PubMed
-
- Go A.S., Mozaffarian D., Roger V.L., Benjamin E.J., Berry J.D., Borden W.B., Bravata D.M., Dai S., Ford E.S., Fox C.S., et al. Heart disease and stroke statistics--2013 update: A report from the American Heart Association. Circulation. 2013;127:e6–e245. doi: 10.1161/CIR.0b013e31828124ad. - DOI - PMC - PubMed
-
- Nymo S.H., Aukrust P., Kjekshus J., McMurray J.J.V., Cleland J.G.F., Wikstrand J., Muntendam P., Wienhues-Thelen U., Latini R., Askevold E.T., et al. Limited Added Value of Circulating Inflammatory Biomarkers in Chronic Heart Failure. JACC Heart Fail. 2017;5:256–264. doi: 10.1016/j.jchf.2017.01.008. - DOI - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Medical
Research Materials
Miscellaneous