Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Oct 15;26(21):27058-27063.
doi: 10.1364/OE.26.027058.

Broadband integrated beam splitter using spatial adiabatic passage

Free article

Broadband integrated beam splitter using spatial adiabatic passage

T Lunghi et al. Opt Express. .
Free article

Abstract

Light routing and manipulation are important aspects of integrated optics. They essentially rely on beam splitters which are at the heart of interferometric setups and active routing. The most common implementations of beam splitters suffer either from strong dispersive response (directional couplers) or tight fabrication tolerances (multimode interference couplers). In this paper we fabricate a robust and simple broadband integrated beam splitter based on lithium niobate with a splitting ratio achromatic over more than 130 nm. Our architecture is based on spatial adiabatic passage, a technique originally used to transfer entirely an optical beam from a waveguide to another one that has been shown to be remarkably robust against fabrication imperfections and wavelength dispersion. Our device shows a splitting ratio of 0.52±0.03 and 0.48±0.03 from 1500 nm up to 1630 nm. Furthermore, we show that suitable design enables the splitting in output beams with relative phase 0 or π. Thanks to their independence to material dispersion, these devices represent simple, elementary components to create achromatic and versatile photonic circuits.

PubMed Disclaimer

LinkOut - more resources