Drought stress has transgenerational effects on seeds and seedlings in winter oilseed rape (Brassica napus L.)
- PMID: 30470194
- PMCID: PMC6251133
- DOI: 10.1186/s12870-018-1531-y
Drought stress has transgenerational effects on seeds and seedlings in winter oilseed rape (Brassica napus L.)
Abstract
Background: Drought stress has a negative effect on both seed yield and seed quality in Brassica napus (oilseed rape, canola). Here we show that while drought impairs the maternal plant performance, it also increases the vigour of progeny of stressed maternal plants. We investigated the transgenerational influence of abiotic stress by detailed analysis of yield, seed quality, and seedling performance on a growth-related and metabolic level. Seeds of eight diverse winter oilseed rape genotypes were generated under well-watered and drought stress conditions under controlled-environment conditions in large plant containers.
Results: We found a decrease in seed quality in seeds derived from mother plants that were exposed to drought stress. At the same time, the seeds that developed under stress conditions showed higher seedling vigour compared to non-stressed controls.This effect on seed quality and seedling vigour was found to be independent of maternal plant yield performance.
Conclusions: Drought stress has a positive transgenerational effect on seedling vigour. Three potential causes for stress-induced improvement of seedling vigour are discussed: (1) Heterotic effects caused by a tendency towards a higher outcrossing rate in response to stress; (2) an altered reservoir of seed storage metabolites to which the seedling resorts during early growth, and (3) inter-generational stress memory, formed by stress-induced changes in the epigenome of the seedling.
Keywords: Amino acids; Canola; Drought stress; Fatty acids; Intergenerational stress memory; Metabolite analysis; Rapeseed; Seed germination; Seed quality; Seedling vigour.
Conflict of interest statement
Ethics approval and consent to participate
Not applicable.
Consent for publication
Not applicable.
Competing interests
The authors declare that they have no competing interests.
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Figures









References
-
- Bates BC, Kundzewicz ZW, Wu S, Palutikof JP, Eds. Climate change and water. Technical Paper of the Intergovernmental Panel on Climate Change, IPCC Secretariat, Geneva. 2008. 210 pp. https://drive.google.com/file/d/0B1gFp6Ioo3akcFFFeGRRVFNYM0E/view.
-
- Li Y, Ye W, Wang M, Yan X. Climate change and drought. A risk assessment of crop-yield impacts. Clim Res. 2009;39:31–46. doi: 10.3354/cr00797. - DOI
-
- FAOSTAT Food and agriculture data. Food and Agriculture Organisation of the United Nations, Rome. 2017. http://www.fao.org/faostat/en. Accessed 8 Jan 2017.
-
- Wittkop B, Snowdon RJ, Friedt W. Status and perspectives of breeding for enhanced yield and quality of oilseed crops for Europe. Euphytica. 2009;170:131–140. doi: 10.1007/s10681-009-9940-5. - DOI
-
- Jensen CR, Mogensen VO, Mortensen G, Fieldsend JK, Milford GFJ, Andersen MN, et al. Seed glucosinolate, oil and protein contents of field-grown rape (Brassica napus L.) affected by soil drying and evaporative demand. Field Crop Res. 1996;47:93–105. doi: 10.1016/0378-4290(96)00026-3. - DOI
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources