Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Apr;33(4):995-1010.
doi: 10.1038/s41375-018-0295-6. Epub 2018 Nov 23.

JAK2V617F but not CALR mutations confer increased molecular responses to interferon-α via JAK1/STAT1 activation

Affiliations

JAK2V617F but not CALR mutations confer increased molecular responses to interferon-α via JAK1/STAT1 activation

Julia Czech et al. Leukemia. 2019 Apr.

Abstract

Pegylated interferon-α (peg-IFNa) treatment induces molecular responses (MR) in patients with myeloproliferative neoplasms (MPNs), including partial MR (PMR) in 30-40% of patients. Here, we compared the efficacy of IFNa treatment in JAK2V617F- vs. calreticulin (CALR)-mutated cells and investigated the mechanisms of differential response. Retrospective analysis of MPN patients treated with peg-IFNa demonstrated that patients harboring the JAK2V617F mutation were more likely to achieve PMR than those with mutated CALR (p = 0.004), while there was no significant difference in hematological response. In vitro experiments confirmed an upregulation of IFN-stimulated genes in JAK2V617F-positive 32D cells as well as patient samples (peripheral blood mononuclear cells and CD34+ hematopoietic stem cells) compared to their CALR-mutated counterparts, and higher IFNa doses were needed to achieve the same IFNa response in CALR- as in JAK2V617F-mutant 32D cells. Additionally, Janus-activated kinase-1 (JAK1) and signal transducers and activators of transcription 1 (STAT1) showed constitutive phosphorylation in JAK2V617F-mutated but not CALR-mutated cells, indicating priming towards an IFNa response. Moreover, IFN-induced growth arrest was counteracted by selective JAK1 inhibition but enhanced by JAK2 inhibition. In conclusion, our data suggest that, clinically, higher doses of IFNa are needed in CALR-mutated vs. JAK2V617F-positive patients and we suggest a model of JAK2V617F-JAK1/STAT1 crosstalk leading to a priming of JAK2V617F-positive cells to IFNa resulting in differential sensitivity.

PubMed Disclaimer

Comment in

  • Impact of interferon on a triple positive polycythemia vera.
    Campario H, Mosca M, Aral B, Bourgeois V, Martin P, Brustel A, Filser M, Marzac C, Plo I, Girodon F. Campario H, et al. Leukemia. 2020 Apr;34(4):1210-1212. doi: 10.1038/s41375-019-0636-0. Epub 2019 Nov 14. Leukemia. 2020. PMID: 31728058 No abstract available.

References

    1. Vainchenker W, Kralovics R. Genetic basis and molecular pathophysiology of classical myeloproliferative neoplasms. Blood. 2017;129:667–79. - DOI
    1. Broseus J, Park JH, Carillo S, Hermouet S, Girodon F. Presence of calreticulin mutations in JAK2-negative polycythemia vera. Blood. 2014;124:3964–6. - DOI
    1. Klampfl T, Gisslinger H, Harutyunyan AS, Nivarthi H, Rumi E, Milosevic JD, et al. Somatic mutations of calreticulin in myeloproliferative neoplasms. N Engl J Med. 2013;369:2379–90. - DOI
    1. Nangalia J, Massie CE, Baxter EJ, Nice FL, Gundem G, Wedge DC, et al. Somatic CALR mutations in myeloproliferative neoplasms with nonmutated JAK2. N Engl J Med. 2013;369:2391–405. - DOI
    1. Araki M, Yang Y, Masubuchi N, Hironaka Y, Takei H, Morishita S, et al. Activation of the thrombopoietin receptor by mutant calreticulin in CALR-mutant myeloproliferative neoplasms. Blood. 2016;127:1307–16. - DOI

Publication types

MeSH terms

LinkOut - more resources