Characterization of the human transferrin receptor produced in a baculovirus expression system
- PMID: 3047122
Characterization of the human transferrin receptor produced in a baculovirus expression system
Abstract
Recombinant human transferrin receptor has been produced in a baculovirus expression system. Magnetic particles coated with an anti-transferrin receptor monoclonal antibody were used to immunoselect virus-infected Sf9 insect cells expressing the human transferrin receptor on their cell surface. Recombinant virus containing the human transferrin receptor cDNA was then plaque-purified from these cells. Biosynthetic labeling studies of infected cells showed that the human transferrin receptor is one of the major proteins made 2-3 days postinfection. The recombinant receptor made in insect cells is glycosylated and is also posttranslationally modified by the addition of a fatty acid moiety. However, studies with tunicamycin and endoglycosidases H and F showed that the oligosaccharides displayed on the recombinant receptor differ from those found on the naturally occurring receptor in human cells. As a consequence, the human receptor produced in the baculovirus system has an Mr of 82,000 and is smaller in size than the authentic receptor. About 30% of human transferrin receptors made in insect cells do not form intermolecular disulfide bonds, but are recognized by the anti-transferrin receptor antibody, B3/25, and bind specifically to a human transferrin-Sepharose column. Binding studies using 125I-labeled human transferrin showed that insect cells infected with the recombinant virus expressed an average of 5.8 +/- 0.9 X 10(5) transferrin receptors (Kd = 63 +/- 9 nM) on their cell surface. Thus, the human transferrin receptor produced in insect cells is biologically active and appears suitable for structural and functional studies.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials
