Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1988 Aug;107(2):635-41.
doi: 10.1083/jcb.107.2.635.

The centrin-based cytoskeleton of Chlamydomonas reinhardtii: distribution in interphase and mitotic cells

Affiliations

The centrin-based cytoskeleton of Chlamydomonas reinhardtii: distribution in interphase and mitotic cells

J L Salisbury et al. J Cell Biol. 1988 Aug.

Abstract

Monoclonal and polyclonal antibodies raised against algal centrin, a protein of algal striated flagellar roots, were used to characterize the occurrence and distribution of this protein in interphase and mitotic Chlamydomonas cells. Chlamydomonas centrin, as identified by Western immunoblot procedures, is a low molecular (20,000-Mr) acidic protein. Immunofluorescence and immunogold labeling demonstrates that centrin is a component of the distal fiber. In addition, centrin-based flagellar roots link the flagellar apparatus to the nucleus. Two major descending fibers extend from the basal bodies toward the nucleus; each descending fiber branches several times giving rise to 8-16 fimbria which surround and embrace the nucleus. Immunogold labeling indicates that these fimbria are juxtaposed to the outer nuclear envelope. Earlier studies have demonstrated that the centrin-based linkage between the flagellar apparatus and the nucleus is contractile, both in vitro and in living Chlamydomonas cells (Wright, R. L., J. Salisbury, and J. Jarvik. 1985. J. Cell Biol. 101:1903-1912; Salisbury, J. L., M. A. Sanders, and L. Harpst. 1987. J. Cell Biol. 105:1799-1805). Immunofluorescence studies show dramatic changes in distribution of the centrin-based system during mitosis that include a transient contraction at preprophase; division, separation, and re-extension during prophase; and a second transient contraction at the metaphase/anaphase boundary. These observations suggest a fundamental role for centrin in motile events during mitosis.

PubMed Disclaimer

References

    1. J Biol Chem. 1977 Jan 10;252(1):383-91 - PubMed
    1. J Cell Biol. 1985 Nov;101(5 Pt 1):1903-12 - PubMed
    1. Nature. 1970 Aug 15;227(5259):680-5 - PubMed
    1. Cell. 1982 Jul;29(3):729-44 - PubMed
    1. J Cell Biol. 1967 Jun;33(3):543-71 - PubMed

Publication types