Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Mar 5:210:329-334.
doi: 10.1016/j.saa.2018.11.050. Epub 2018 Nov 19.

Toxicity of silver nanoparticles released by Hancornia speciosa (Mangabeira) biomembrane

Affiliations

Toxicity of silver nanoparticles released by Hancornia speciosa (Mangabeira) biomembrane

Luciane M Almeida et al. Spectrochim Acta A Mol Biomol Spectrosc. .

Abstract

Recent research has shown that latex from different species is able to produce tissue replacement and regeneration. Particularly, biomembranes obtained from Hancornia speciosa latex (HSB) have shown high angiogenic and osteogenic activity. Considering new materials for wound healing, it would be interesting to develop a product combining antibacterial and antifungal activities. Silver nanoparticles (AgNP) have been commonly used for this purpose in medicinal products and devices for decades. In order to combine angiogenic, antibacterial and antifungal properties on the same platform, we developed an HSB containing 3 concentrations of AgNP. It was observed that the HSB successfully accommodated the AgNP in the matrix and released them in a controlled way. The release dynamics of AgNP by HSB was described by UV-vis absorption spectroscopy. The released nanoparticles were evaluated by Transmission Electron Microscopy (TEM) and Dynamic Light Scattering (DLS) measurements. In addition, the cytotoxic and genotoxic effects were evaluated using the Allium cepa assay. The results showed no cytotoxic effect of HSB-AgNP in all studied concentrations. The genotoxic effect was observed in HSB-AgNP at the two highest concentrations, however not at the lowest concentration. Thus, the addition of AgNP at the lowest concentration can improve the pharmacological activity of HSB without causing a toxic effect on vegetal cells. Therefore, the H. speciosa latex biomembrane presented in this paper combines angiogenic, anti-inflammatory and antibacterial properties and can be considered potentially new biomaterial for wound-healing.

Keywords: Allium cepa model; Angiogenic activity; Antibacterial properties; Biomaterial; Biomembrane; Hancornia speciosa latex; Nanoparticles.

PubMed Disclaimer

MeSH terms

LinkOut - more resources