Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2018 Nov 24;7(12):172.
doi: 10.3390/antiox7120172.

The Role of Peroxiredoxin 6 in Cell Signaling

Affiliations
Review

The Role of Peroxiredoxin 6 in Cell Signaling

José A Arevalo et al. Antioxidants (Basel). .

Abstract

Peroxiredoxin 6 (Prdx6, 1-cys peroxiredoxin) is a unique member of the peroxiredoxin family that, in contrast to other mammalian peroxiredoxins, lacks a resolving cysteine and uses glutathione and π glutathione S-transferase to complete its catalytic cycle. Prdx6 is also the only peroxiredoxin capable of reducing phospholipid hydroperoxides through its glutathione peroxidase (Gpx) activity. In addition to its peroxidase activity, Prdx6 expresses acidic calcium-independent phospholipase A₂ (aiPLA₂) and lysophosphatidylcholine acyl transferase (LPCAT) activities in separate catalytic sites. Prdx6 plays crucial roles in lung phospholipid metabolism, lipid peroxidation repair, and inflammatory signaling. Here, we review how the distinct activities of Prdx6 are regulated during physiological and pathological conditions, in addition to the role of Prdx6 in cellular signaling and disease.

Keywords: NADPH (nicotinamide adenine dinucleotide phosphate) oxidase; glutathione peroxidase; inflammation; lipid peroxidation; phospholipase A2; phospholipid hydroperoxide.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflict of interest.

References

    1. Perkins A., Nelson K.J., Parsonage D., Poole L.B., Karplus P.A. Peroxiredoxins: Guardians against oxidative stress and modulators of peroxide signaling. Trends Biochem. Sci. 2015;40:435–445. doi: 10.1016/j.tibs.2015.05.001. - DOI - PMC - PubMed
    1. Rhee S.G., Kil I.S. Multiple functions and regulation of mammalian peroxiredoxins. Annu. Rev. Biochem. 2017;86:749–775. doi: 10.1146/annurev-biochem-060815-014431. - DOI - PubMed
    1. Rhee S.G., Kang S.W., Chang T.S., Jeong W., Kim K. Peroxiredoxin, a novel family of peroxidases. IUBMB Life. 2001;52:35–41. doi: 10.1080/15216540252774748. - DOI - PubMed
    1. Kang S.W., Baines I.C., Rhee S.G. Characterization of a mammalian peroxiredoxin that contains one conserved cysteine. J. Biol. Chem. 1998;273:6303–6311. doi: 10.1074/jbc.273.11.6303. - DOI - PubMed
    1. Manevich Y., Feinstein S.I., Fisher A.B. Activation of the antioxidant enzyme 1-CYS peroxiredoxin requires glutathionylation mediated by heterodimerization with pi GST. Proc. Natl. Acad. Sci. USA. 2004;101:3780–3785. doi: 10.1073/pnas.0400181101. - DOI - PMC - PubMed