Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2018 Nov 26;19(1):204.
doi: 10.1186/s13059-018-1583-1.

Livestock 2.0 - genome editing for fitter, healthier, and more productive farmed animals

Affiliations
Review

Livestock 2.0 - genome editing for fitter, healthier, and more productive farmed animals

Christine Tait-Burkard et al. Genome Biol. .

Abstract

The human population is growing, and as a result we need to produce more food whilst reducing the impact of farming on the environment. Selective breeding and genomic selection have had a transformational impact on livestock productivity, and now transgenic and genome-editing technologies offer exciting opportunities for the production of fitter, healthier and more-productive livestock. Here, we review recent progress in the application of genome editing to farmed animal species and discuss the potential impact on our ability to produce food.

PubMed Disclaimer

Conflict of interest statement

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Pathways to ‘Livestock 2.0’. A brief summary of the developments in livestock breeding and what new technologies might offer to the industry. Selective breeding and genomic selection have already improved productivity and disease resistance in livestock significantly. Genome editing and transgenesis could facilitate step improvements through (i) rapidly increasing the frequency of favorable trait-associated alleles, (ii) introgression of favorable alleles from other breeds/species without linkage drag, and (iii) creation of de novo favorable alleles. A key challenge will be the identification of genome-editing targets, which will require a combination of high-quality annotated livestock genomes, well-powered genome-wide association studies, reverse-genetic screens (e.g. genome-wide CRISPR knock-out), and high-resolution knowledge of the biology of the target traits. CRISPR, clustered regularly interspaced short palindromic repeat

References

    1. 2018 - Hunger Map. World food program. United Nations world food Programme - fighting hunger worldwide. 2018. https://www.wfp.org/content/2018-hunger-map. Accessed 30 Oct 2018.
    1. United Nations. World population Prospects 2015. https://population.un.org/wpp/Publications/Files/Key_Findings_WPP_2015.pdf. Accessed 30 Oct 2018.
    1. Alexandratos N, Bruinsma J. World agriculture towards 2030/2050: the 2012 revision. 2030. http://www.fao.org/fileadmin/templates/esa/Global_persepctives/world_ag_.... Accessed 30 Oct 2018.
    1. Lowder Sarah K., Skoet Jakob, Raney Terri. The Number, Size, and Distribution of Farms, Smallholder Farms, and Family Farms Worldwide. World Development. 2016;87:16–29. doi: 10.1016/j.worlddev.2015.10.041. - DOI
    1. FAO. The Global Dairy Sector: Facts. https://www.fil-idf.org/wp-content/uploads/2016/12/FAO-Global-Facts-1.pdf. Accessed 30 Oct 2018.

Publication types

LinkOut - more resources