Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Mar 20;10(3):1627-1635.
doi: 10.1021/acschemneuro.8b00556. Epub 2018 Dec 11.

Inhibition of Serine Palmitoyltransferase by a Small Organic Molecule Promotes Neuronal Survival after Astrocyte Amyloid Beta 1-42 Injury

Affiliations

Inhibition of Serine Palmitoyltransferase by a Small Organic Molecule Promotes Neuronal Survival after Astrocyte Amyloid Beta 1-42 Injury

Teresa De Vita et al. ACS Chem Neurosci. .

Abstract

Alzheimer's disease (AD) is a slow-progressing disease of the brain characterized by symptoms such as impairment of memory and other cognitive functions. AD is associated with an inflammatory process that involves astrocytes and microglial cells, among other components. Astrocytes are the most abundant type of glial cells in the central nervous system (CNS). They are involved in inducing neuroinflammation. The present study uses astrocyte-neuron cocultures to investigate how ARN14494, a serine palmitoyltransferase (SPT) inhibitor, affects the CNS in terms of anti-inflammation and neuroprotection. SPT is the first rate-limiting enzyme in the de novo ceramide synthesis pathway. Consistent evidence suggests that ceramide is increased in AD brain patients. After β-amyloid 1-42 injury in an in vitro model of AD, ARN14494 inhibits SPT activity and the synthesis of long-chain ceramides and dihydroceramides that are involved in AD progression. In mouse primary cortical astrocytes, ARN14494 prevents the synthesis of proinflammatory cytokines TNFα and IL1β, growth factor TGFβ1, and oxidative stress-related enzymes iNOS and COX2. ARN14494 also exerts neuroprotective properties in primary cortical neurons. ARN14494 decreases neuronal death and caspase-3 activation in neurons, when the neuroinflammation is attenuated in astrocytes. These findings suggest that ARN14494 protects neurons from β-amyloid 1-42 induced neurotoxicity through a variety of mechanisms, including antioxidation, antiapoptosis, and anti-inflammation. SPT inhibition could therefore be a safe therapeutic strategy for ameliorating the pathology of Alzheimer's disease.

Keywords: Alzheimer’s disease; astrocytes; ceramides; neuroinflammation; neurons; neuroprotection; serine palmitoyltransferase.

PubMed Disclaimer

Publication types

LinkOut - more resources