Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Mar:187:134-145.
doi: 10.1016/j.jsbmb.2018.11.011. Epub 2018 Nov 24.

Vitamin D controls the capacity of human dendritic cells to induce functional regulatory T cells by regulation of glucose metabolism

Affiliations
Free article

Vitamin D controls the capacity of human dendritic cells to induce functional regulatory T cells by regulation of glucose metabolism

An-Sofie Vanherwegen et al. J Steroid Biochem Mol Biol. 2019 Mar.
Free article

Abstract

Tolerogenic dendritic cells (tolDCs) instruct regulatory T cells (Tregs) to dampen autoimmunity. Active vitamin D3 (1α,25-dihydroxyvitamin D3; 1α,25(OH)2D3) imprints human monocyte-derived DCs with tolerogenic properties by reprogramming their glucose metabolism. Here we identify the glycolytic enzyme 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 4 (PFKFB4) as a critical checkpoint and direct transcriptional target of 1α,25(OH)2D3 in determining the tolDC profile. Using tracer metabolomics, we show that PFKFB4 activity is essential for glucose metabolism, especially for glucose oxidation, which is elevated upon 1α,25(OH)2D3 exposure. Pharmacological inhibition of PFKFB4 reversed the 1α,25(OH)2D3-mediated shift in metabolism, DC profile and function, as determined by expression of inhibitory surface markers and secretion of regulatory cytokines and factors. Moreover, PFKFB4 inhibition in 1α,25(OH)2D3-treated DCs blocked their hallmark capacity to induce suppressive Tregs. This work demonstrates that alterations in the bioenergetic metabolism of immune cells are central to the immunomodulatory effects induced by 1α,25(OH)2D3.

Keywords: 1α,25(OH)(2)D(3); Dendritic cells; Immunometabolism; PFKFB4; Regulatory T cells; Tolerogenicity.

PubMed Disclaimer

Publication types

LinkOut - more resources