Proton radiation-induced cancer progression
- PMID: 30482279
- DOI: 10.1016/j.lssr.2018.08.002
Proton radiation-induced cancer progression
Abstract
There are considerable health risks related to ionizing and proton radiation exposure. While there is a long history of health risks associated with ionizing (photon) radiation exposure, there is a limited understanding of the long-term health risks associated with proton radiation exposure. Since proton radiation is becoming more common in cancer therapy, the long-term biological effects of proton radiation remain less well characterized in terms of radiotherapy and well as for astronauts during deep space explorations. In this study, we compared the long-term side effects of proton radiation to equivalent doses of X-rays in the initiation and progression of premalignant lesions in a lung cancer susceptible mouse model (K-rasLA1). We show proton irradiation causes more complex DNA damage that is not completely repaired resulting in increased oxidative stress in the lungs both acutely and persistently. We further observed K-rasLA1 mice irradiated with protons had an increased number and size of initiated and premalignant lesions and adenomas that were often infiltrated with inflammatory cells. Proton irradiated mice had a lower median survival and increased carcinoma incidence as compared to unirradiated controls and X-rays exposed mice. Our conclusion is that exposure to proton irradiation enhances the progression of premalignant lesions to invasive carcinomas through persistent DNA damage, chronic oxidative stress, and immunosuppression.
Keywords: Adenocarcinoma; Bragg peak; Ionizing radiation; Lung cancer; Persistent DNA damage.
Copyright © 2018 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical
