Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 May;127(5):563-569.
doi: 10.1016/j.jbiosc.2018.10.020. Epub 2018 Nov 24.

Kinetic modeling and sensitivity analysis for higher ethanol production in self-cloning xylose-using Saccharomyces cerevisiae

Affiliations

Kinetic modeling and sensitivity analysis for higher ethanol production in self-cloning xylose-using Saccharomyces cerevisiae

Akira Fukuda et al. J Biosci Bioeng. 2019 May.

Abstract

We constructed a xylose-utilizing Saccharomyces cerevisiae strain using endogenous xylose-assimilating genes (strain K7-XYL). Such self-cloning yeast is expected to make a great contribution to cost reduction of ethanol production processes. However, it is difficult to modify self-cloning yeast for optimal performance because the available gene source is limited. To improve the ethanol productivity of our self-cloning yeast, a kinetic model of ethanol production was constructed and sensitivity analysis was performed. Alcohol dehydrogenase (ADH1) was identified as a metabolic bottleneck reaction in the ethanol production pathway. An ADH1 overexpression strain (K7-XYL-ADH1) was constructed and evaluated in YP (yeast extract 10 g/L, peptone 20 g/L) medium containing 50 g/L xylose as the sole carbon source. Strain K7-XYL-ADH1 showed higher ethanol productivity (13.8 g/L) than strain K7-XYL (12.5 g/L). Then, K7-XYL-ADH1 was evaluated in YP medium containing 80 g/L glucose and 50 g/L xylose; however, the ethanol productivity did not change relative to that of K7-XYL (K7-XYL 46.3 g/L, K7-XYL-ADH1 45.9 g/L). We presumed that due to the presence of glucose, the internal redox balance of the cells had changed. On culturing in an aerated 5-L jar fermentor to change the internal redox balance of cells, strain K7-XYL-ADH1 showed higher ethanol productivity than K7-XYL (K7-XYL 45.0 g/L, K7-XYL-ADH1 49.4 g/L). Our results confirmed that ADH1 was a metabolic bottleneck in the ethanol production pathway. By eliminating the bottleneck, self-cloning yeast showed almost the same ethanol productivity as genetically modified yeast.

Keywords: Ethanol production; Kinetic modeling; Metabolic bottleneck; Saccharomyces cerevisiae; Self-cloning; Xylose.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources