Melanoma Early Detection: Big Data, Bigger Picture
- PMID: 30482597
- PMCID: PMC6685706
- DOI: 10.1016/j.jid.2018.06.187
Melanoma Early Detection: Big Data, Bigger Picture
Abstract
Innovative technologies, including novel communication and imaging tools, are affecting dermatology in profound ways. A burning question for the field is whether we will retrospectively react to innovations or proactively leverage them to benefit precision medicine. Early detection of melanoma is a dermatologic area particularly poised to benefit from such innovation. This session of the Montagna Symposium on Biology of Skin focused on provocative, potentially disruptive advances, including crowdsourcing of patient advocacy efforts, rigorous experimental design of public education campaigns, research with mobile phone applications, advanced skin imaging technologies, and the emergence of artificial intelligence as a diagnostic supplement.
Keywords: RCM; War on Melanoma; WoM; reflectance confocal microscopy.
Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Conflict of interest statement
CONFLICT OF INTEREST
The authors state no conflict of interest.
Figures

Similar articles
-
Early Diagnosis of Skin Melanoma Metastasis by Means of Dermoscopy and Confocal Microscopy.JAMA Dermatol. 2018 Dec 1;154(12):1482-1485. doi: 10.1001/jamadermatol.2018.2699. JAMA Dermatol. 2018. PMID: 30383118 No abstract available.
-
Role of In Vivo Reflectance Confocal Microscopy in the Analysis of Melanocytic Lesions.Acta Dermatovenerol Croat. 2018 Apr;26(1):64-67. Acta Dermatovenerol Croat. 2018. PMID: 29782304 Review.
-
Melanoma: How and when to consider clinical diagnostic technologies.J Am Acad Dermatol. 2022 Mar;86(3):503-512. doi: 10.1016/j.jaad.2021.06.901. Epub 2021 Dec 14. J Am Acad Dermatol. 2022. PMID: 34915058 Review.
-
New diagnostics for melanoma detection: from artificial intelligence to RNA microarrays.Future Oncol. 2012 Jul;8(7):819-27. doi: 10.2217/fon.12.84. Future Oncol. 2012. PMID: 22830402 Review.
-
Update on non-invasive imaging techniques in early diagnosis of non-melanoma skin cancer.G Ital Dermatol Venereol. 2015 Aug;150(4):393-405. Epub 2015 Jul 16. G Ital Dermatol Venereol. 2015. PMID: 26184797 Review.
Cited by
-
Revolutionizing Skin Cancer Triage: The Role of Patient-Initiated Teledermoscopy in Remote Diagnosis.Cancers (Basel). 2024 Jul 17;16(14):2565. doi: 10.3390/cancers16142565. Cancers (Basel). 2024. PMID: 39061204 Free PMC article.
-
Is obesity a risk factor for melanoma?BMC Cancer. 2023 Feb 22;23(1):178. doi: 10.1186/s12885-023-10560-8. BMC Cancer. 2023. PMID: 36814240 Free PMC article.
-
Attitudes towards Trusting Artificial Intelligence Insights and Factors to Prevent the Passive Adherence of GPs: A Pilot Study.J Clin Med. 2021 Jul 14;10(14):3101. doi: 10.3390/jcm10143101. J Clin Med. 2021. PMID: 34300267 Free PMC article.
-
Effect of Histopathological Explanations for Dermoscopic Criteria on Learning Curves in Skin Cancer Training: a Randomized Controlled Trial.Dermatol Pract Concept. 2023 Apr 1;13(2):e2023105. doi: 10.5826/dpc.1302a105. Online ahead of print. Dermatol Pract Concept. 2023. PMID: 37196312 Free PMC article.
-
The State of Melanoma: Emergent Challenges and Opportunities.Clin Cancer Res. 2021 May 15;27(10):2678-2697. doi: 10.1158/1078-0432.CCR-20-4092. Epub 2021 Jan 7. Clin Cancer Res. 2021. PMID: 33414132 Free PMC article.
References
-
- Alcon JF, Ciuhu C, Kate W ten, Heinrich A, Uzunbajakava N, Krekels G, et al. Automatic Imaging System With Decision Support for Inspection of Pigmented Skin Lesions and Melanoma Diagnosis. IEEE J. Sel. Top. Signal Process 2009;3(1):14–25
-
- Anders MP, Fengler S, Volkmer B, Greinert R, Breitbart EW. Nationwide skin cancer screening in Germany: Evaluation of the training program. Int. J. Dermatol 2017;56(10):1046–51 - PubMed
-
- Argenziano G, Cerroni L, Zalaudek I, Staibano S, Hofmann-Wellenhof R, Arpaia N, et al. Accuracy in melanoma detection: A 10-year multicenter survey. J. Am. Acad. Dermatol 2012;67(1):54–59.e1 - PubMed
-
- Argenziano G, Moscarella E, Annetta A, Battarra VC, Brunetti B, Buligan C, et al. Melanoma detection in Italian pigmented lesion clinics. G. Ital. Dermatol. Venereol 2014;149(2):161–7 - PubMed
-
- Blum A, Luedtke H, Ellwanger U, Schwabe R, Rassner G, Garbe C. Digital image analysis for diagnosis of cutaneous melanoma. Development of a highly effective computer algorithm based on analysis of 837 melanocytic lesions. Br. J. Dermatol 2004;151(5):1029–38 - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Medical