Porous Zero-Mode Waveguides for Picogram-Level DNA Capture
- PMID: 30484321
- PMCID: PMC9701543
- DOI: 10.1021/acs.nanolett.8b04170
Porous Zero-Mode Waveguides for Picogram-Level DNA Capture
Abstract
We have recently shown that nanopore zero-mode waveguides are effective tools for capturing picogram levels of long DNA fragments for single-molecule DNA sequencing. Despite these key advantages, the manufacturing of large arrays is not practical due to the need for serial nanopore fabrication. To overcome this challenge, we have developed an approach for the wafer-scale fabrication of waveguide arrays on low-cost porous membranes, which are deposited using molecular-layer deposition. The membrane at each waveguide base contains a network of serpentine pores that allows for efficient electrophoretic DNA capture at picogram levels while eliminating the need for prohibitive serial pore milling. Here, we show that the loading efficiency of these porous waveguides is up to 2 orders of magnitude greater than their nanopore predecessors. This new device facilitates the scaling-up of the process, greatly reducing the cost and effort of manufacturing. Furthermore, the porous zero-mode waveguides can be used for applications that benefit from low-input single-molecule real-time sequencing.
Keywords: Nanopore; SMRT sequencing; ZMWs; nanofabrication; porous membrane.
Figures




Similar articles
-
Rapid Identification of DNA Fragments through Direct Sequencing with Electro-Optical Zero-Mode Waveguides.Adv Mater. 2022 Mar;34(9):e2108479. doi: 10.1002/adma.202108479. Epub 2022 Jan 24. Adv Mater. 2022. PMID: 34964522 Free PMC article.
-
Reversible positioning of single molecules inside zero-mode waveguides.Nano Lett. 2014 Oct 8;14(10):6023-9. doi: 10.1021/nl503134x. Epub 2014 Sep 15. Nano Lett. 2014. PMID: 25209321 Free PMC article.
-
Nanopore sequencing technology: nanopore preparations.Trends Biotechnol. 2007 Apr;25(4):174-81. doi: 10.1016/j.tibtech.2007.02.008. Epub 2007 Feb 22. Trends Biotechnol. 2007. PMID: 17320228 Review.
-
Length-independent DNA packing into nanopore zero-mode waveguides for low-input DNA sequencing.Nat Nanotechnol. 2017 Dec;12(12):1169-1175. doi: 10.1038/nnano.2017.176. Epub 2017 Sep 11. Nat Nanotechnol. 2017. PMID: 28892102 Free PMC article.
-
Plasmonic Nanopores for Single-Molecule Detection and Manipulation: Toward Sequencing Applications.Nano Lett. 2019 Nov 13;19(11):7553-7562. doi: 10.1021/acs.nanolett.9b02759. Epub 2019 Oct 14. Nano Lett. 2019. PMID: 31587559 Review.
Cited by
-
Advances in Translational Nanotechnology: Challenges and Opportunities.Appl Sci (Basel). 2020;10(14):10.3390/app10144881. doi: 10.3390/app10144881. Appl Sci (Basel). 2020. PMID: 38486792 Free PMC article.
-
Zero-mode waveguides can be made better: fluorescence enhancement with rectangular aluminum nanoapertures from the visible to the deep ultraviolet.Nanoscale Adv. 2020 Jul 23;2(9):4153-4160. doi: 10.1039/d0na00366b. eCollection 2020 Sep 16. Nanoscale Adv. 2020. PMID: 36132755 Free PMC article.
-
Recent advances in plasmonic nanocavities for single-molecule spectroscopy.Nanoscale Adv. 2020 Nov 5;3(3):633-642. doi: 10.1039/d0na00715c. eCollection 2021 Feb 10. Nanoscale Adv. 2020. PMID: 36133836 Free PMC article. Review.
-
Rapid Identification of DNA Fragments through Direct Sequencing with Electro-Optical Zero-Mode Waveguides.Adv Mater. 2022 Mar;34(9):e2108479. doi: 10.1002/adma.202108479. Epub 2022 Jan 24. Adv Mater. 2022. PMID: 34964522 Free PMC article.
-
Electrochemical Zero-Mode Waveguide Potential-Dependent Fluorescence of Glutathione Reductase at Single-Molecule Occupancy.Anal Chem. 2022 Mar 8;94(9):3970-3977. doi: 10.1021/acs.analchem.1c05091. Epub 2022 Feb 25. Anal Chem. 2022. PMID: 35213143 Free PMC article.
References
-
- Rothberg JM; Leamon JH Nat. Biotechnol 2008, 26, 1117–24. - PubMed
-
- Eid J; Fehr A; Gray J; Luong K; Lyle J; Otto G; Peluso P; Rank D; Baybayan P; Bettman B; Bibillo A; Bjornson K; Chaudhuri B; Christians F; Cicero R; Clark S; Dalal R; Dewinter A; Dixon J; Foquet M; Gaertner A; Hardenbol P; Heiner C; Hester K; Holden D; Kearns G; Kong X; Kuse R; Lacroix Y; Lin S; Lundquist P; Ma C; Marks P; Maxham M; Murphy D; Park I; Pham T; Phillips M; Roy J; Sebra R; Shen G; Sorenson J; Tomaney A; Travers K; Trulson M; Vieceli J; Wegener J; Wu D; Yang A; Zaccarin D; Zhao P; Zhong F; Korlach J; Turner S Science 2009, 323, 133–8. - PubMed
-
- Levy SE; Myers RM Annu. Rev. Genomics Hum. Genet 2016, 17, 95–115. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources