Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1988 Oct;72(4):1364-7.

Erythroid burst-promoting activity produced by interleukin-1-stimulated endothelial cells is granulocyte-macrophage colony-stimulating factor

Affiliations
  • PMID: 3048443
Free article

Erythroid burst-promoting activity produced by interleukin-1-stimulated endothelial cells is granulocyte-macrophage colony-stimulating factor

G M Segal et al. Blood. 1988 Oct.
Free article

Abstract

Interleukin-1 (IL-1) induces cultured human umbilical vein endothelial cells to elaborate heterogeneous hematopoietic growth factors, including granulocyte-macrophage and granulocyte colony-stimulating factors (GM-CSF and G-CSF, respectively). Because erythroid burst-promoting activity (BPA) is also elaborated by endothelial cells exposed to IL-1, we sought to determine whether the BPA released by IL-1-induced endothelial cells simply reflects the known erythropoietic activity of GM-CSF or whether other uncharacterized factors might be involved. Media conditioned by multiply passaged endothelial cells cultured for three days with recombinant IL-1 alpha (ECMIL-1) stimulated erythroid burst and GM colony formation in cultures of human nonadherent T-lymphocyte-depleted marrow mononuclear cells. Pretreatment with an anti-GM-CSF antiserum neutralized all the BPA and 56% of the GM colony-stimulating activity (GM-CSA) in ECMIL-1. The antiserum used in these studies did not inhibit IL-3 or G-CSF activity and did not inhibit ECMIL-1-induced murine GM colony growth (a measure of human G-CSF). To examine whether GM-CSF induces BPA release by accessory cells, media conditioned by marrow cells cultured for three days with GM-CSF were tested in the colony growth assays. Pretreatment with anti-GM-CSF antiserum completely neutralized the BPA and GM-CSA of the marrow cell-conditioned medium. We conclude that GM-CSF is the BPA elaborated by IL-1-induced endothelial cells. The in vitro erythropoietic activity of GM-CSF is not dependent on induced BPA release by accessory cells and therefore likely results from a direct effect of GM-CSF on progenitor cells.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources