Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Nov 28;13(11):e0208160.
doi: 10.1371/journal.pone.0208160. eCollection 2018.

Mycoplasmas are no exception to extracellular vesicles release: Revisiting old concepts

Affiliations

Mycoplasmas are no exception to extracellular vesicles release: Revisiting old concepts

Patrice Gaurivaud et al. PLoS One. .

Abstract

Release of extracellular vesicles (EV) by Gram-negative and positive bacteria is being frequently reported. EV are nano-sized, membrane-derived, non-self-replicating, spherical structures shed into the extracellular environment that could play a role in bacteria-host interactions. Evidence of EV production in bacteria belonging to the class Mollicutes, which are wall-less, is mainly restricted to the genus Acholeplasma and is scanty for the Mycoplasma genus that comprises major human and animal pathogens. Here EV release by six Mycoplasma (sub)species of clinical importance was investigated. EV were obtained under nutritional stress conditions, purified by ultracentrifugation and observed by electron microscopy. The membrane proteins of EV from three different species were further identified by mass spectrometry as a preliminary approach to determining their potential role in host-pathogen interactions. EV were shown to be released by all six (sub)species although their quantities and sizes (30-220 nm) were very variable. EV purification was complicated by the minute size of viable mycoplasmal cells. The proteins of EV-membranes from three (sub)species included major components of host-pathogen interactions, suggesting that EV could contribute to make the host-pathogen interplay more complex. The process behind EV release has yet to be deciphered, although several observations demonstrated their active release from the plasma membrane of living cells. This work shed new light on old concepts of "elementary bodies" and "not-cell bound antigens".

PubMed Disclaimer

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Fig 1
Fig 1. Electron micrographs (A, C) and size distributions (B, D) of negatively-stained EV purified from Acholeplasma laidlawii PG8T (A, B) and Mycoplasma mycoides subsp. mycoides Afadé (C, D).
EV diameters were estimated using Image J on n = 198 vesicles from A. laidlawii PG8T and n = 122, 129 and 149 vesicles from M. mycoides subsp. mycoides Afadé, corresponding to three production batches.
Fig 2
Fig 2. Electron micrographs of negatively-stained EV purified from A. laidlaiwii PG8T (A), M. mycoides subsp. mycoides Afadé (B), M. mycoides subsp. capri PG3T (C), M. capricolum subsp. capricolum L15937 (D), M. agalactiae 5632 (E), M. agalactiae L14628 (F), M. bovis L15762 (G) and M. fermentans PG18T (H).
Examples of EV are indicated by black arrowheads.
Fig 3
Fig 3. EV diameters from different (sub)species, as observed in electron micrographs (Tukey representation).
Al, A. laidlaiwii PG8T; Mmm, M. mycoides subsp. mycoides Afadé; Mmc, M. mycoides subspp. capri PG3T; Mcc, M. capricolum subsp. capricolum L15937; Ma, M. agalactiae; Mb, M. bovis L15762; and Mf, M. fermentans PG18T. The number (n) of EV observed is indicated for each (sub)species. For Mmm, this “n” results from 3 batches of EV production.
Fig 4
Fig 4. Transmission electron micrographs (A, B) of M. mycoides subsp. mycoides (strain Afadé) cells showing vesicle-like structures budding from the surface of the mycoplasma cells.
A zoom of micrograph B is shown in the right panel. Diameters were estimated using imageJ.

References

    1. Deatherage BL, Cookson BT. Membrane vesicle release in bacteria, eukaryotes, and archaea: a conserved yet underappreciated aspect of microbial life. Infect Immun. 2012;80(6):1948–1957. 10.1128/IAI.06014-11 . - DOI - PMC - PubMed
    1. Bladen HA, Waters JF. Electron Microscopic Study of Some Strains of Bacteroides. J Bacteriol. 1963;86:1339–1344. . - PMC - PubMed
    1. Kim JH, Lee J, Park J, Gho YS. Gram-negative and Gram-positive bacterial extracellular vesicles. Semin Cell Dev Biol. 2015;40:97–104. 10.1016/j.semcdb.2015.02.006 . - DOI - PubMed
    1. Jan AT. Outer Membrane Vesicles (OMVs) of Gram-negative Bacteria: A Perspective Update. Front Microbiol. 2017;8:1053 10.3389/fmicb.2017.01053 . - DOI - PMC - PubMed
    1. Dorward DW, Garon CF. DNA Is Packaged within Membrane-Derived Vesicles of Gram-Negative but Not Gram-Positive Bacteria. Appl Environ Microbiol. 1990;56(6):1960–1962. . - PMC - PubMed

Publication types

MeSH terms

Substances