Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 May;120(5):7978-7988.
doi: 10.1002/jcb.28075. Epub 2018 Nov 28.

Silencing of long noncoding RNA MEG3 enhances cerebral protection of dexmedetomidine against hypoxic-ischemic brain damage in neonatal mice by binding to miR-129-5p

Affiliations

Silencing of long noncoding RNA MEG3 enhances cerebral protection of dexmedetomidine against hypoxic-ischemic brain damage in neonatal mice by binding to miR-129-5p

Xiu-Min Zhou et al. J Cell Biochem. 2019 May.

Abstract

Hypoxic-ischemic brain damage (HIBD) is a leading cause of neonatal acute mortality and chronic nervous system injury. Recently, it has been found that long noncoding RNAs (lncRNAs) play a significant role in the neurodevelopment and etiopathogenesis of HIBD. Here, the researchers aimed to determine the role of lncRNA maternally expressed gene (MEG3) in the therapeutic effect of dexmedetomidine (DEX) in neonatal mice with HIBD through the regulation of microRNA-129-5p (miR-129-5p). HIBD models were established in C57/BL6 neonatal mice. Subsequently, the target relationship between MEG3 and miR-129-5p was predicted and verified. The neonatal mice were injected with DEX, ad-shMEG3, and mimics and inhibitors of miR-129-5p to identify roles of MEG3 and miR-129-5p in therapeutic effects of DEX on neuronal apoptosis and injury, cerebral atrophy, and learning and memory ability of neonatal mice with HIBD. MEG3 directly targeted and inhibited the expression of miR-129-5p. Silencing of MEG3 or upregulation of miR-129-5p effectively promoted the therapeutic effect of DEX on neonatal mice with HIBD. Silencing of MEG3 or upregulation of miR-129-5p reduced the neuronal apoptosis rate and degree of cerebral atrophy, and also enhanced the learning and memory ability of HIBD neonatal mice. Collectively, the key findings obtained from the present study support the notion that MEG3 silencing enhances the therapeutic effect of DEX on neonatal mice with HIBD by binding to miR-129-5p.

Keywords: cerebral protection; dexmedetomidine; hypoxic-ischemic brain damage; maternally expressed gene; microRNA-129-5p; neonatal mice.

PubMed Disclaimer

Similar articles

Cited by

References

REFERENCES
    1. Ding H, Zhang H, Ding H, et al. Transplantation of placenta-derived mesenchymal stem cells reduces hypoxic-ischemic brain damage in rats by ameliorating the inflammatory response. Cell Mol Immunol. 2017;14:693-701.
    1. Wang X, Zhang J, Yang Y, et al. Progesterone attenuates cerebral edema in neonatal rats with hypoxic-ischemic brain damage by inhibiting the expression of matrix metalloproteinase-9 and aquaporin-4. Exp Ther Med. 2013;6:263-267.
    1. Yin X, Meng F, Wang Y, et al. Effect of hyperbaric oxygen on neurological recovery of neonatal rats following hypoxic-ischemic brain damage and its underlying mechanism. Int J Clin Exp Pathol. 2013;6:66-75.
    1. Zhao F, Qu Y, Liu J, et al. Microarray Profiling and Co-Expression Network Analysis of LncRNAs and mRNAs in Neonatal Rats Following Hypoxic-ischemic Brain Damage. Sci Rep. 2015;5:13850.
    1. Zhao FY, Qu Y. Long non-coding RNAs and hypoxic-ischemic brain damage. Zhongguo Dang Dai Er Ke Za Zhi. 2016;18:1183-1187.

LinkOut - more resources