Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2018 Nov 28;7(12):494.
doi: 10.3390/jcm7120494.

The Short and Long-Term Effects of Pregnancy on Multiple Sclerosis and Experimental Autoimmune Encephalomyelitis

Affiliations
Review

The Short and Long-Term Effects of Pregnancy on Multiple Sclerosis and Experimental Autoimmune Encephalomyelitis

Pamela A McCombe. J Clin Med. .

Abstract

The role of pregnancy in multiple sclerosis (MS) is of importance because many patients with MS are young women in the childbearing age who require information to inform their reproductive decisions. Pregnancy is now well-known to be associated with fewer relapses of MS and reduced activity of autoimmune encephalomyelitis (EAE). However, in women with multiple sclerosis, this benefit is not always sufficient to protect against a rebound of disease activity if disease-modulating therapy is ceased for pregnancy. There is concern that use of assisted reproductive therapies can be associated with relapses of MS, but more data are required. It is thought that the beneficial effects of pregnancy are due to the pregnancy-associated changes in the maternal immune system. There is some evidence of this in human studies and studies of EAE. There is also evidence that having been pregnant leads to better long-term outcome of MS. The mechanism for this is not fully understood but it could result from epigenetic changes resulting from pregnancy or parenthood. Further studies of the mechanisms of the beneficial effects of pregnancy could provide information that might be used to produce new therapies.

Keywords: epigenetics; experimental autoimmune encephalomyeltis; multiple sclerosis; pregnancy.

PubMed Disclaimer

Conflict of interest statement

The author declares no conflict of interest.

Similar articles

Cited by

References

    1. Reich D.S., Lucchinetti C.F., Calabresi P.A. Multiple Sclerosis. N. Engl. J. Med. 2018;378:169–180. doi: 10.1056/NEJMra1401483. - DOI - PMC - PubMed
    1. Thompson A.J., Baranzini S.E., Geurts J., Hemmer B., Ciccarelli O. Multiple sclerosis. Lancet. 2018;391:1622–1636. doi: 10.1016/S0140-6736(18)30481-1. - DOI - PubMed
    1. Patsopoulos N.A., Barcellos L.F., Hintzen R.Q., Schaefer C., van Duijn C.M., Noble J.A., Raj T., Gourraud P.A., Stranger B.E., Oksenberg J., et al. Fine-mapping the genetic association of the major histocompatibility complex in multiple sclerosis: HLA and non-HLA effects. PLoS Genet. 2013;9:e1003926. doi: 10.1371/journal.pgen.1003926. - DOI - PMC - PubMed
    1. Beecham A.H., Patsopoulos N.A., Xifara D.K., Davis M.F., Kemppinen A., Cotsapas C., Shah T.S., Spencer C., Booth D., Goris A., et al. Analysis of immune-related loci identifies 48 new susceptibility variants for multiple sclerosis. Nat. Genet. 2013;45:1353–1360. doi: 10.1038/ng.2770. - DOI - PMC - PubMed
    1. Sawcer S., Hellenthal G., Pirinen M., Spencer C.C., Patsopoulos N.A., Moutsianas L., Dilthey A., Su Z., Freeman C., Hunt S.E., et al. Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature. 2011;476:214–219. doi: 10.1038/nature10251. - DOI - PMC - PubMed

LinkOut - more resources