Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Apr 1;19(4):2138-2146.
doi: 10.1166/jnn.2019.15810.

Synthesis of an Efficient Counter Electrode Material for Dye-Sensitized Solar Cells by Pyrolysis of Melamine and Graphene Oxide

Affiliations

Synthesis of an Efficient Counter Electrode Material for Dye-Sensitized Solar Cells by Pyrolysis of Melamine and Graphene Oxide

Liguo Wei et al. J Nanosci Nanotechnol. .

Abstract

An efficient counter electrode material for dye sensitized solar cells (DSSCs) was synthesized by pyrolysis of melamine and graphene oxide. The synthesized samples were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, Raman spectroscopy and scanning electrode microscopy, which show that nitrogen doped reduced graphene oxide (NRGO) was obtained by this synthesis method. In the synthesized NRGO, graphitic structure was kept and the nitrogen was existence as pyrrolic, pyridinic, graphitic, and oxidized nitrogen species in the samples. After deposited as counter electrode films for DSSCs, it shows lower charge-transfer resistance at the electrode/electrolyte interface and higher electrocatalytic activity towards reduction of triiodide (I-₃) than that of reduced graphene oxide (RGO) prepared also by this method without adding melamine. Consequently, the DSSCs based on NRGO counter electrodes achieve an energy conversion efficiency of 4.60%, which is higher than that of RGO counter electrode (2.35%). Although the photovoltaic performance of NRGO counter electrode was lower than that of Pt counter electrode (5.70%), it is still a promising counter electrode to replace noble metal Pt due to its low cost and simple synthesis process.

PubMed Disclaimer

Similar articles

LinkOut - more resources