Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Mar:123:e294-e302.
doi: 10.1016/j.wneu.2018.11.154. Epub 2018 Nov 26.

The Influence of Cross-Links on Long-Segment Instrumentation Following Spinal Osteotomy: A Finite Element Analysis

Affiliations

The Influence of Cross-Links on Long-Segment Instrumentation Following Spinal Osteotomy: A Finite Element Analysis

Tianhao Wang et al. World Neurosurg. 2019 Mar.

Abstract

Objective: To develop finite element models of spine following osteotomy and evaluate the effect of number and location of cross-links (CLs) on long-segment instrumentation.

Methods: A finite element model of instrumented spine following osteotomy was created from computed tomography images of a postoperative male patient with thoracolumbar kyphotic deformity. Five fixation models were established to simulate different number and location of CLs. Four loading conditions (flexion, extension, lateral bending, and axial rotation) were applied on the models. Range of motion (ROM), maximum value and distribution of stress on implants, and stress on vertebrae were compared between models.

Results: With increased number of CLs, average ROM of instrumented segments was reduced by 2.37%, 1.89%, and 2.49% in flexion, extension, and lateral bending. ROM was reduced by 21.98% in loading axial rotation condition. With increased number of CLs, ROM tended to be limited. Peak stresses were located on rods during axial rotation, on proximal pedicle screws during flexion, and on the osteotomy site during extension and lateral bending. CLs had an effect of dispersing stress concentration.

Conclusions: The application of CLs enhanced the rigidity of the construct. With increased number of CLs, ROM of the construct was decreased, especially in axial rotation. CLs can also disperse the stress concentration. After comparing various CL configurations in different motion conditions, we believe that the optimal method is to place 2 CLs at the osteotomy site and the proximal segment.

Keywords: Biomechanics; Cross-link; Finite element analysis; Osteotomy; Pedicle screw instrumentation.

PubMed Disclaimer

LinkOut - more resources