Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Jan;31(4):e1805082.
doi: 10.1002/adma.201805082. Epub 2018 Nov 29.

Polymer Doping Enables a Two-Dimensional Electron Gas for High-Performance Homojunction Oxide Thin-Film Transistors

Affiliations

Polymer Doping Enables a Two-Dimensional Electron Gas for High-Performance Homojunction Oxide Thin-Film Transistors

Yao Chen et al. Adv Mater. 2019 Jan.

Abstract

High-performance solution-processed metal oxide (MO) thin-film transistors (TFTs) are realized by fabricating a homojunction of indium oxide (In2 O3 ) and polyethylenimine (PEI)-doped In2 O3 (In2 O3 :x% PEI, x = 0.5-4.0 wt%) as the channel layer. A two-dimensional electron gas (2DEG) is thereby achieved by creating a band offset between the In2 O3 and PEI-In2 O3 via work function tuning of the In2 O3 :x% PEI, from 4.00 to 3.62 eV as the PEI content is increased from 0.0 (pristine In2 O3 ) to 4.0 wt%, respectively. The resulting devices achieve electron mobilities greater than 10 cm2 V-1 s-1 on a 300 nm SiO2 gate dielectric. Importantly, these metrics exceed those of the devices composed of the pristine In2 O3 materials, which achieve a maximum mobility of ≈4 cm2 V-1 s-1 . Furthermore, a mobility as high as 30 cm2 V-1 s-1 is achieved on a high-k ZrO2 dielectric in the homojunction devices. This is the first demonstration of 2DEG-based homojunction oxide TFTs via band offset achieved by simple polymer doping of the same MO material.

Keywords: 2D electron gases; PEI-doped In2O3; homojunctions; oxide electronics.

PubMed Disclaimer