Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1988 Aug;92(2):219-37.
doi: 10.1085/jgp.92.2.219.

Metabolic regulation of the K(ATP) and a maxi-K(V) channel in the insulin-secreting RINm5F cell

Affiliations

Metabolic regulation of the K(ATP) and a maxi-K(V) channel in the insulin-secreting RINm5F cell

B Ribalet et al. J Gen Physiol. 1988 Aug.

Abstract

K channels in the cell membrane of the insulin-secreting RINm5F cell line were studied using the patch-clamp technique in cell-attached patch mode. With 140 mM K in the pipette, two channels displaying different conductive and kinetics properties were observed. A voltage-independent, inward-rectifying, 55-pS channel was active at rest (no glucose, -70 mV), but was almost completely inhibited by 5 mM glucose. A 140-pS channel was seen in the absence of glucose only after cell membrane depolarization with high (30 mM) K. This channel was voltage dependent, with a linear slope conductance between -60 and +60 mV, and was completely inhibited only by greater than 15 mM glucose. The former channel we identify as an ATP-sensitive channel previously described in excised patches and refer to it as the K(ATP) channel. The latter, because of its large conductance and voltage-dependent kinetics, will be referred to as the maxi-K(V) channel, adopting a nomenclature previously used to classify highly conductive K channels (Latorre, R., and C. Miller, 1983, Journal of Membrane Biology, 71:11-30). In addition to glucose, mannose and 2-ketoisocaproate, which also initiate insulin secretion and electrical activity in the islet beta cell, reduced the activity of both the K(ATP) and the maxi-K(V) channel. Lactate and arginine, which potentiate but do not initiate insulin secretion or beta cell electrical activity in normal islets, each caused a large reduction in maxi-K(V) channel activity, without consistently affecting the activity of K(ATP) channels. Another agonist that potentiates insulin secretion and electrical activity in normal cells, the tumor-promoting phorbol ester TPA, blocked maxi-K(V) channel activity while stimulating the activity of the K(ATP) channel, thereby implicating phosphorylation in the control of channel activity. These results indicate that metabolic substrates that initiate electrical activity and insulin secretion in normal beta cells reduce the activity of both the K(ATP) and the maxi-K(V) channel, while potentiating agents reduce only the maxi-K(V) channel. The possible role of these two channels in the processes of initiation and potentiation of the beta cell response is discussed.

PubMed Disclaimer

Similar articles

Cited by

Publication types