Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Feb:112:56-66.
doi: 10.1016/j.peptides.2018.11.006. Epub 2018 Nov 27.

The effect of halogenation on the antimicrobial activity, antibiofilm activity, cytotoxicity and proteolytic stability of the antimicrobial peptide Jelleine-I

Affiliations

The effect of halogenation on the antimicrobial activity, antibiofilm activity, cytotoxicity and proteolytic stability of the antimicrobial peptide Jelleine-I

Fengjing Jia et al. Peptides. 2019 Feb.

Abstract

Antimicrobial peptides (AMPs) are believed to be a promising class of antimicrobial agents against bacteria and fungi. To promote the clinical use of AMPs, their antimicrobial activity and susceptibility to protease degradation should be further improved. The antimicrobial peptide Jelleine-I was originally isolated from the royal jelly of honeybees (Apis mellifera) with a short sequence of PFKLSLHL-NH2 (953.24 Da). Here, a series of halogenated derivatives of the antimicrobial peptide Jelleine-I were designed and synthesized. The results showed that the in vitro antimicrobial activity, antibiofilm activity and in vivo antimicrobial efficacy were enhanced 1-8-fold after halogenation. Additionally, the proteolytic stability of Jelleine-I was improved 10-100-fold by halogenation. Meanwhile, the halogenated derivatives retained negligible hemolytic activity and cytotoxicity. Among these derivatives, the antimicrobial activity and antibiofilm activity of chlorine-Jelleine-I (Cl-J-I), bromine-Jelleine-I (Br-J-I), and iodine-Jelleine-I (I-J-I) were better than those of fluorine-Jelleine-I (F-J-I). The stabilities of Br-J-I and I-J-I against the degradation of enzymes and the serum were better than those of F-J-I and Cl-J-I. In conclusion, this study may offer a useful strategy to enhance antimicrobial efficacy and proteolytic stability by halogenation. The halogenated derivatives Cl-J-I, Br-J-I and I-J-I may be considered as potential antimicrobial agents against microbial infection.

Keywords: Antimicrobial activity; Antimicrobial peptide; Halogenation; Jelleine-I.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources