Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Mar;49(3):171-179.
doi: 10.2519/jospt.2019.8419. Epub 2018 Nov 30.

Influence of Aging on Lower Extremity Sagittal Plane Variability During 5 Essential Subphases of Stance in Male Recreational Runners

Influence of Aging on Lower Extremity Sagittal Plane Variability During 5 Essential Subphases of Stance in Male Recreational Runners

Jacqueline Morgan et al. J Orthop Sports Phys Ther. 2019 Mar.

Abstract

Background: Interjoint coordination variability is a measure of the ability of the human system to regulate multiple movement strategies. Normal aging may reduce variability, resulting in a less adaptive system. Additionally, when older runners are asked to run at speeds greater than preferred, this added constraint may place older runners at greater risk for injury.

Objectives: To examine the influence of normal aging on coordination variability across 5 distinct subphases of stance in runners during preferred and fixed speeds.

Methods: Twelve older (60 years of age or older) and 12 younger (30 years of age or younger) male recreational runners volunteered for this cross-sectional study. Three-dimensional gait analyses were collected at preferred and fixed speeds. Stance phase was divided into 5 subphases: (SP1) loading response, (SP2) peak braking, (SP3) peak compression, (SP4) midstance, and (SP5) peak propulsion. Continuous relative phase variability for sagittal plane joint pairs-hip-knee, knee-ankle, and hip-ankle-was calculated. Repeated-measures linear mixed models were employed to compare variability for each joint pair.

Results: An age-by-stance subphase interaction was found for knee-ankle (P<.01) and hip-ankle (P<.01) pairs, while main effects for age and stance subphase were found for the hip-knee pair (P<.05). Specifically, loading response and peak braking variability were lower in older runners and greater across stance for knee-ankle and hip-ankle pairs, while midstance was lowest in the hip-knee pair for older and younger runners. No effects for running pace were found.

Conclusion: Less adaptive movement strategies seen in older runners may partially contribute to the increased eccentric stresses during periods of high load. J Orthop Sports Phys Ther 2019;49(3):171-179. Epub 30 Nov 2018. doi:10.2519/jospt.2019.8419.

Keywords: aging; coordination; gait analysis; mechanics; motor control.

PubMed Disclaimer

LinkOut - more resources