Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Dec 17;57(24):15462-15473.
doi: 10.1021/acs.inorgchem.8b02767. Epub 2018 Dec 3.

High-Pressure Synthesis, Crystal Structure, Chemical Bonding, and Ferroelectricity of LiNbO3-Type LiSbO3

Affiliations

High-Pressure Synthesis, Crystal Structure, Chemical Bonding, and Ferroelectricity of LiNbO3-Type LiSbO3

Yoshiyuki Inaguma et al. Inorg Chem. .

Abstract

A polar LiNbO3 (LN)-type oxide LiSbO3 was synthesized by a high-temperature heat treatment under a pressure of 7.7 GPa and found to exhibit ferroelectricity. The crystal structural refinement using the data of synchrotron powder X-ray diffraction and neutron diffraction and the electronic structure calculation of LN-type LiSbO3 suggest a covalent-bonding character between Sb and O. When comparing the distortion of BO6 in LN-type ABO3, the distortions of SbO6 in LiSbO3 and SnO6 in ZnSnO3, which included a B cation with a d10 electronic configuration, were smaller than those of BO6 in LN-type oxides having the second-order Jahn-Teller active B cation, e.g., LiNbO3 and ZnTiO3. The temperature dependence of the lattice parameters, second harmonic generation, dielectric permittivity, and differential scanning calorimetry made it clear that a second-order ferroelectric-paraelectric phase transition occurs at a Curie temperature of Tc = 605 ± 10 K in LN-type LiSbO3. Further, first-principles density functional theory calculation suggested that perovskite-type LiSbO3 is less stable than LN-type LiSbO3 under even high pressure, and the ambient phase of LiSbO3 directly transforms to LN-type LiSbO3 under high pressure. The phase stability of LN-type LiSbO3 and the polar and ferroelectric properties are rationalized by the covalent bonding of Sb-O and the relatively weak Coulomb repulsion between Li+ and Sb5+.

PubMed Disclaimer

LinkOut - more resources