Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Dec 4;18(1):613.
doi: 10.1186/s12879-018-3517-7.

Human monoclonal antibodies isolated from a primary pneumococcal conjugate Vaccinee demonstrates the expansion of an antigen-driven Hypermutated memory B cell response

Affiliations

Human monoclonal antibodies isolated from a primary pneumococcal conjugate Vaccinee demonstrates the expansion of an antigen-driven Hypermutated memory B cell response

Zhifeng Chen et al. BMC Infect Dis. .

Abstract

Background: Community-acquired pneumonia is a leading infectious cause of hospitalization. A few vaccines exist to prevent pneumococcal disease in adults, including a pneumococcal polysaccharide unconjugated vaccine and a protein conjugated polysaccharide vaccine. Previous studies on the human immune response to the unconjugated vaccine showed that the vaccine boosted the existing memory B cells. In the present study, we investigated the human B cell immune response following pneumococcal polysaccharide conjugate vaccination.

Methods: Plasmablast B cells from a pneumococcal polysaccharide conjugate vaccinee were isolated and cloned for analysis. In response to primary vaccination, identical sequences from the plasmablast-derived antibodies were identified from multiple B cells, demonstrating evidence of clonal expansion. We evaluated the binding specificity of these human monoclonal antibodies in immunoassays, and tested there in vitro function in a multiplexed opsonophagocytic assay (MOPA). To characterize the plasmablast B cell response to the pneumococcal conjugated vaccine, the germline usage and the variable region somatic hypermutations on these antibodies were analyzed. Furthermore, a serotype 4 polysaccharide-specific antibody was tested in an animal challenge study to explore the in vivo functional activity.

Results: The data suggests that the pneumococcal polysaccharide conjugate vaccine boosted memory B cell responses, likely derived from previous pneumococcal exposure. The majority of the plasmablast-derived antibodies contained higher numbers of variable region somatic hypermutations and evidence for selection, as demonstrated by replacement to silent ratio's (R/S) greater than 2.9 in the complementarity-determining regions (CDRs). In addition, we found that VH3/JH4 was the predominant germline sequence used in these polysaccharide-specific B cells. All of the tested antibodies demonstrated narrow polysaccharide specificity in ELISA binding, and demonstrated functional opsonophagocytic killing (OPK) activity in the MOPA assay. The in-vivo animal challenge study showed that the tested serotype 4 polysaccharide-specific antibody demonstrated a potent protective effect when administered prior to bacterial challenge.

Conclusions: The findings on the pneumococcal polysaccharide conjugate vaccine responses from a vaccinated subject reported in this study are similar to previously published data on the pneumococcal polysaccharide unconjugated vaccine responses. In both vaccine regimens, the pre-existing human memory B cells were expanded after vaccination with preferential use of the germline VH3/JH4 genes.

Keywords: Human; Monoclonal antibodies; Plasmablast B cell; Pneumococcal conjugate vaccine.

PubMed Disclaimer

Conflict of interest statement

Ethics approval and consent to participate

All animal experiments were approved by the Institutional Animal Care and Use Committee (IACUC), Merck & Co., Inc. (Kenilworth, NJ, USA). All procedures were performed in accordance with our institution’s IACUC guidelines in strict accordance with the recommendations in the Guide for Care and Use of Laboratory Animals of the National Institutes of Health.

The human donor was provided with written informed consent from the blood bank (Biological Specialties, Inc.), and the Merck Institutional Review Board approved the human study.

Consent for publication

The manuscript had been approved for publication.

Competing interests

All the authors are salaried Merck employee, and this fact does not affect the objectivity and integrity of this manuscript.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
mAbs from PCV13-induced plasmablast B cells reactive to individual polysaccharide antigens. A two-day polysaccharide-specific sandwich ELISA was used to identify polysaccharide-binding mAbs . mAb 1A2 is reactive to polysaccharide type 7F. mAb 1A4, 1C6, 1D4 are reactive to polysaccharide type 1. mAb 1A6, 1A10, 1B4, 1C3 are reactive to polysaccharide type 4. mAb 1B2 is reactive to polysaccharide type 18C, and mAb 1C4, 1D7 are reactive to polysaccharide types 6A and 6B
Fig. 2
Fig. 2
S. pneumoniae serotype 4-specific mAb protects mice from S. pneumoniae serotype 4 challenge. a Survival rate of each treatment group at 96 h post-infection. Log-rank (Mantel-Cox) test was performed. Each group was compared to No Antibody Treatment Group. * p < 0.05, statistically significant difference. b Mean weight of survivors in each group at 0, 24, 48, 72 h post-infection. c Bacteremia of each animal at 48 h post-infection. Individual raw data plotted on Log10 scale with geometric mean and 95% CI. Transformed data analyzed by One-way ANOVA with Dunnett post test to evaluate for significant reduction in blood CFU counts (compared to No Antibody Treatment Group), *** p < 0.001, highly statistically significant difference

Similar articles

Cited by

References

    1. van der Poll T, Opal SM. Pathogenesis, treatment, and prevention of pneumococcal pneumonia. Lancet. 2009;374:1543–1556. doi: 10.1016/S0140-6736(09)61114-4. - DOI - PubMed
    1. Jain WH Self S, Wunderink RG, Fakhran S, Balk R, AM Bramley CR, Grijalva CG, Anderson EJ, Courtney DM, et al. Community-acquired pneumonia requiring hospitalization among U.S. adults. N Engl J Med. 2015;373:415–427. doi: 10.1056/NEJMoa1500245. - DOI - PMC - PubMed
    1. Bogaert D, De Groot R, Hermans PW. Streptococcus pneumoniae colonisation: the key to pneumococcal disease. Lancet Infect Dis. 2004;4:144–154. doi: 10.1016/S1473-3099(04)00938-7. - DOI - PubMed
    1. Morens DM, Taubenberger JK, Fauci AS. Predominant role of bacterial pneumonia as a cause of death in pandemic influenza: implications for pandemic influenza preparedness. J Infect Dis. 2008;198:962–970. doi: 10.1086/591708. - DOI - PMC - PubMed
    1. Habib M, Porter BD, Satzke C. Capsular serotyping of Streptococcus pneumoniae using the Quellung reaction. J Vis Exp. 2014;24(84):e51208. - PMC - PubMed

MeSH terms