Soft-Material-Based Smart Insoles for a Gait Monitoring System
- PMID: 30513646
- PMCID: PMC6317025
- DOI: 10.3390/ma11122435
Soft-Material-Based Smart Insoles for a Gait Monitoring System
Abstract
Spatiotemporal analysis of gait pattern is meaningful in diagnosing and prognosing foot and lower extremity musculoskeletal pathologies. Wearable smart sensors enable continuous real-time monitoring of gait, during daily life, without visiting clinics and the use of costly equipment. The purpose of this study was to develop a light-weight, durable, wireless, soft-material-based smart insole (SMSI) and examine its range of feasibility for real-time gait pattern analysis. A total of fifteen healthy adults (male: 10, female: 5, age 25.1 ± 2.64) were recruited for this study. Performance evaluation of the developed insole sensor was first executed by comparing the signal accuracy level between the SMSI and an F-scan. Gait data were simultaneously collected by two sensors for 3 min, on a treadmill, at a fixed speed. Each participant walked for four times, randomly, at the speed of 1.5 km/h (C1), 2.5 km/h (C2), 3.5 km/h (C3), and 4.5 km/h (C4). Step count from the two sensors resulted in 100% correlation in all four gait speed conditions (C1: 89 ± 7.4, C2: 113 ± 6.24, C3: 141 ± 9.74, and C4: 163 ± 7.38 steps). Stride-time was concurrently determined and R2 values showed a high correlation between the two sensors, in both feet (R² ≥ 0.90, p < 0.05). Bilateral gait coordination analysis using phase coordination index (PCI) was performed to test clinical feasibility. PCI values of the SMSI resulted in 1.75 ± 0.80% (C1), 1.72 ± 0.81% (C2), 1.72 ± 0.79% (C3), and 1.73 ± 0.80% (C4), and those of the F-scan resulted in 1.66 ± 0.66%, 1.70 ± 0.66%, 1.67 ± 0.62%, and 1.70 ± 0.62%, respectively, showing the presence of a high correlation (R² ≥ 0.94, p < 0.05). The insole developed in this study was found to have an equivalent performance to commercial sensors, and thus, can be used not only for future sensor-based monitoring device development studies but also in clinical setting for patient gait evaluations.
Keywords: capacitive pressure sensor; conductive textile; gait; monitoring; phase coordination index.
Conflict of interest statement
The authors declare no conflict of interest.
Figures














References
-
- Wang L., Tan T., Ning H., Hu W. Silhouette analysis-based gait recognition for human identification. IEEE Trans. Pattern Anal. Mach. Intell. 2003;25:1505–1518. doi: 10.1109/TPAMI.2003.1251144. - DOI
-
- Moeslund T.B., Adrian H., Volker K. A survey of advances in vision-based human motion capture and analysis. Comp. Vis. Image Underst. 2006;104:90–126. doi: 10.1016/j.cviu.2006.08.002. - DOI