Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Feb 6;31(5):055801.
doi: 10.1088/1361-648X/aaf343. Epub 2018 Nov 23.

Half-metallic surfaces in thin-film Ti2MnAl0.5Sn0.5

Affiliations

Half-metallic surfaces in thin-film Ti2MnAl0.5Sn0.5

Sam Prophet et al. J Phys Condens Matter. .

Abstract

Materials exhibiting a high degree of spin polarization in electron transport are in demand for applications in spintronics-an emerging technology utilizing a spin degree of freedom in electronic devices. Room-temperature half-metals are considered ideal candidates, as they behave as an insulator for one spin channel and as a conductor for the other spin channel. In addition, for nano-size devices, one has to take into account possible modification of electronic structure in thin-film geometry, due to the potential presence of surface/interface states. It has been shown that typically these states have a detrimental impact on half-metallicity, i.e. their presence results in reduced spin-polarization. Here, we employ density functional calculations to explore an inverse Heusler compound, Ti2MnAl0.5Sn0.5, which exhibits half-metallic electronic structure in bulk geometry. In particular, this material behaves as a regular metal for majority-spin, and as a semiconductor for minority-spin states. We show that in thin-film geometry, the type of termination surface has a decisive effect on half-metallicity of this material. In particular, we analyze six possible termination configurations, and show that for four of them, energy states emerge in the minority-spin band gap, significantly reducing the spin polarization of Ti2MnAl0.5Sn0.5. At the same time, our calculations indicate that two termination surfaces preserve half-metallic properties of this material. This result is somewhat unexpected, as most of the available literature reports reduction of the spin-polarization due to the presence of surface states. Thus, our results show that a judicious choice of the termination surface may be a crucial factor in nano-device applications, where highly spin-polarized current is needed.

PubMed Disclaimer

LinkOut - more resources