Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Jan 16;67(2):644-652.
doi: 10.1021/acs.jafc.8b04810. Epub 2019 Jan 8.

PpMYB15 and PpMYBF1 Transcription Factors Are Involved in Regulating Flavonol Biosynthesis in Peach Fruit

Affiliations

PpMYB15 and PpMYBF1 Transcription Factors Are Involved in Regulating Flavonol Biosynthesis in Peach Fruit

Yunlin Cao et al. J Agric Food Chem. .

Abstract

Flavonoids are major polyphenol compounds in plants and contribute substantially to the health-promoting benefits of fruit and vegetables. Peach is rich in polyphenols with flavonols as the main flavonoids. To investigate the regulation of flavonol biosynthesis in peach fruit, two R2R3-MYB transcription factor (TF) genes, PpMYB15 and PpMYBF1, were isolated and characterized. Sequence analysis revealed that the PpMYB15 and PpMYBF1 proteins are members of the flavonol clade of the R2R3-MYB family. Real-time quantitative PCR analysis showed that PpMYB15 and PpMYBF1 transcript levels correlated well with the flavonol content and the expression of flavonol synthase ( PpFLS1) in different fruit samples. Dual-luciferase assays indicated that both PpMYB15 and PpMYBF1 could trans-activate promoters of flavonoid biosynthesis genes, including chalcone synthase ( PpCHS1), chalcone isomerase ( PpCHI1), flavanone 3-hydroxylase ( PpF3H), and PpFLS1. Transient overexpression of 35S::PpMYB15 or 35S::PpMYBF1 both triggered flavonol biosynthesis but not anthocyanin and proanthocyanidin biosynthesis in tobacco leaves. In transgenic tobacco flowers, overexpression of 35S::PpMYB15 or 35S::PpMYBF1 caused a significant increase in flavonol levels and significantly reduced anthocyanin accumulation, resulting in pale-pink or pure white flowers. These results suggest that PpMYB15 and PpMYBF1 are functional flavonol-specific positive regulators in peach fruit and are important candidates for biotechnological engineering flavonol biosynthesis in plants.

Keywords: FLS; MYB; flavonol; heterologous expression; peach; transcriptional regulation.

PubMed Disclaimer

MeSH terms

LinkOut - more resources