Clear cell renal cell carcinoma: CT-based radiomics features for the prediction of Fuhrman grade
- PMID: 30527316
- DOI: 10.1016/j.ejrad.2018.10.005
Clear cell renal cell carcinoma: CT-based radiomics features for the prediction of Fuhrman grade
Abstract
Objectives: To discriminate low grade (Fuhrman I/II) and high grade (Fuhrman III/IV) clear cell renal cell carcinoma (CCRCC) by using CT-based radiomic features.
Methods: 161 and 99 patients diagnosed with low and high grade CCRCCs from January 2011 to May 2018 were enrolled in this study. 1029 radiomic features were extracted from corticomedullary (CMP), and nephrographic phase (NP) CT images of all patients. We used interclass correlation coefficient (ICC) and the least absolute shrinkage and selection operator (LASSO) regression method to select features, then the selected features were constructed three classification models (CMP, NP and with their combination) to discriminate high and low grades CCRCC. These three models were built by logistic regression method using 5-fold cross validation strategy, evaluated with receiver operating characteristics curve (ROC) and compared using DeLong test.
Results: We found 11 and 24 CMP and NP features were independently significantly associated with the Fuhrman grades. The model of CMP, NP and Combined model using radiomic feature set showed diagnostic accuracy of 0.719 (AUC [area under the curve], 0.766; 95% CI [confidence interval]: 0.709-0.816; sensitivity, 0.602; specificity, 0.838), 0.738 (AUC, 0.818; 95% CI:0.765-0.838; sensitivity, 0.693; specificity, 0.838), 0.777(AUC, 0.822; 95% CI: 0.769-0.866; sensitivity, 0.677; specificity, 0.839). There were significant differences in AUC between CMP model and Combined model (P = 0.0208), meanwhile, the differences between CMP model and NP model, NP model and Combined model reached no significant (P = 0.0844, 0.7915).
Conclusions: Radiomic features could be used as biomarker for the preoperative evaluation of the CCRCC Fuhrman grades.
Keywords: Clear cell renal cell carcinoma; Computed tomography; Fuhrman grade; Radiomics signature.
Copyright © 2018. Published by Elsevier B.V.
MeSH terms
LinkOut - more resources
Full Text Sources
Medical
Miscellaneous