Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Dec:109:8-12.
doi: 10.1016/j.ejrad.2018.10.005. Epub 2018 Oct 5.

Clear cell renal cell carcinoma: CT-based radiomics features for the prediction of Fuhrman grade

Affiliations

Clear cell renal cell carcinoma: CT-based radiomics features for the prediction of Fuhrman grade

Jun Shu et al. Eur J Radiol. 2018 Dec.

Abstract

Objectives: To discriminate low grade (Fuhrman I/II) and high grade (Fuhrman III/IV) clear cell renal cell carcinoma (CCRCC) by using CT-based radiomic features.

Methods: 161 and 99 patients diagnosed with low and high grade CCRCCs from January 2011 to May 2018 were enrolled in this study. 1029 radiomic features were extracted from corticomedullary (CMP), and nephrographic phase (NP) CT images of all patients. We used interclass correlation coefficient (ICC) and the least absolute shrinkage and selection operator (LASSO) regression method to select features, then the selected features were constructed three classification models (CMP, NP and with their combination) to discriminate high and low grades CCRCC. These three models were built by logistic regression method using 5-fold cross validation strategy, evaluated with receiver operating characteristics curve (ROC) and compared using DeLong test.

Results: We found 11 and 24 CMP and NP features were independently significantly associated with the Fuhrman grades. The model of CMP, NP and Combined model using radiomic feature set showed diagnostic accuracy of 0.719 (AUC [area under the curve], 0.766; 95% CI [confidence interval]: 0.709-0.816; sensitivity, 0.602; specificity, 0.838), 0.738 (AUC, 0.818; 95% CI:0.765-0.838; sensitivity, 0.693; specificity, 0.838), 0.777(AUC, 0.822; 95% CI: 0.769-0.866; sensitivity, 0.677; specificity, 0.839). There were significant differences in AUC between CMP model and Combined model (P = 0.0208), meanwhile, the differences between CMP model and NP model, NP model and Combined model reached no significant (P = 0.0844, 0.7915).

Conclusions: Radiomic features could be used as biomarker for the preoperative evaluation of the CCRCC Fuhrman grades.

Keywords: Clear cell renal cell carcinoma; Computed tomography; Fuhrman grade; Radiomics signature.

PubMed Disclaimer

MeSH terms