Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Dec 17;28(24):3984-3991.e5.
doi: 10.1016/j.cub.2018.10.044. Epub 2018 Dec 6.

GABA-Induced Intracellular Mg2+ Mobilization Integrates and Coordinates Cellular Information Processing for the Maturation of Neural Networks

Affiliations
Free article

GABA-Induced Intracellular Mg2+ Mobilization Integrates and Coordinates Cellular Information Processing for the Maturation of Neural Networks

Ryu Yamanaka et al. Curr Biol. .
Free article

Abstract

Cells simultaneously utilize different intracellular signaling systems to process environmental information [1-4]. The magnesium ion (Mg2+) is recognized as a multitarget analog regulator that performs many roles, such as circadian timekeeping, due to the following properties: (1) it influences wide-ranging biological processes, (2) its concentration is tightly controlled within a narrow sub-millimolar range, and (3) its intracellular dynamics are slow and long lasting [5-11]; its regulatory manner is not all-or-none in contrast to the switch-like signal transduction by the well-established second messenger Ca2+ [12]. Recent studies, however, have reported another role for Mg2+ as a second messenger in immune cells-i.e., a switching system for cellular states [13, 14]. These multifaceted characteristics of Mg2+ raise the question of how Mg2+ processes information and how common its role is as a signaling molecule. We focused on the trophic effects of γ-aminobutyric acid (GABA) and its developmental transition, the molecular basis of which also remains poorly understood despite its evolutionarily well-conserved roles [15-19]. Here, we show that in neurons, GABAA receptor signaling, whose action is excitatory, triggers Mg2+ release from mitochondria specifically at early developmental stages, and that released Mg2+ stimulates the CREB and mTOR signaling pathways, thereby facilitating structural and functional maturation of neural networks. We found that cytosolic Mg2+ fluctuations within physiological ranges is enough to crucially regulate ERK, CREB, and mTOR activities. Together, intracellular Mg2+ physiologically integrates and coordinates cellular information, and Mg2+ is a novel signal transducer for organizing neural networks.

Keywords: GABA; cellular information processing; magnesium ion; neuronal development; signal transduction.

PubMed Disclaimer

Comment in

Publication types

LinkOut - more resources