Using deep neural networks along with dimensionality reduction techniques to assist the diagnosis of neurodegenerative disorders
- PMID: 30532642
- PMCID: PMC6267552
- DOI: 10.1093/jigpal/jzy026
Using deep neural networks along with dimensionality reduction techniques to assist the diagnosis of neurodegenerative disorders
Abstract
The analysis of neuroimaging data is frequently used to assist the diagnosis of neurodegenerative disorders such as Alzheimer's disease (AD) or Parkinson's disease (PD) and has become a routine procedure in the clinical practice. During the past decade, the pattern recognition community has proposed a number of machine learning-based systems that automatically analyse neuroimaging data in order to improve the diagnosis. However, the high dimensionality of the data is still a challenge and there is room for improvement. The development of novel classification frameworks as TensorFlow, recently released as open source by Google Inc., represents an opportunity to continue evolving these systems. In this work, we demonstrate several computer-aided diagnosis (CAD) systems based on Deep Neural Networks that improve the diagnosis for AD and PD and outperform those based on classical classifiers. In order to address the small sample size problem we evaluate two dimensionality reduction algorithms based on Principal Component Analysis and Non-Negative Matrix Factorization (NNMF), respectively. The performance of developed CAD systems is assessed using 4 datasets with neuroimaging data of different modalities.
Keywords: Alzheimer’s disease; Multivariate analysis; Parkinson’s disease; TensorFlow; deep neural networks; machine learning; non-negative matrix factorization; principal component analysis.
Figures


Similar articles
-
Decoding degeneration: the implementation of machine learning for clinical detection of neurodegenerative disorders.Neural Regen Res. 2023 Jun;18(6):1235-1242. doi: 10.4103/1673-5374.355982. Neural Regen Res. 2023. PMID: 36453399 Free PMC article. Review.
-
Combining Feature Extraction Methods to Assist the Diagnosis of Alzheimer's Disease.Curr Alzheimer Res. 2016;13(7):831-7. doi: 10.2174/1567205013666151116141906. Curr Alzheimer Res. 2016. PMID: 26567734
-
A Deep Learning Approach for Automated Diagnosis and Multi-Class Classification of Alzheimer's Disease Stages Using Resting-State fMRI and Residual Neural Networks.J Med Syst. 2019 Dec 18;44(2):37. doi: 10.1007/s10916-019-1475-2. J Med Syst. 2019. PMID: 31853655
-
Alzheimer's disease detection using data fusion with a deep supervised encoder.Front Dement. 2024;3:1332928. doi: 10.3389/frdem.2024.1332928. Epub 2024 Feb 12. Front Dement. 2024. PMID: 39055313 Free PMC article.
-
A Survey on Deep Learning for Neuroimaging-Based Brain Disorder Analysis.Front Neurosci. 2020 Oct 8;14:779. doi: 10.3389/fnins.2020.00779. eCollection 2020. Front Neurosci. 2020. PMID: 33117114 Free PMC article. Review.
Cited by
-
Artificial intelligence in single photon emission computed tomography (SPECT) imaging: a narrative review.Ann Transl Med. 2021 May;9(9):820. doi: 10.21037/atm-20-5988. Ann Transl Med. 2021. PMID: 34268433 Free PMC article. Review.
-
Automatic classification of dopamine transporter SPECT: deep convolutional neural networks can be trained to be robust with respect to variable image characteristics.Eur J Nucl Med Mol Imaging. 2019 Dec;46(13):2800-2811. doi: 10.1007/s00259-019-04502-5. Epub 2019 Aug 31. Eur J Nucl Med Mol Imaging. 2019. PMID: 31473800
-
Editorial: Deep Learning in Aging Neuroscience.Front Neuroinform. 2020 Oct 26;14:573974. doi: 10.3389/fninf.2020.573974. eCollection 2020. Front Neuroinform. 2020. PMID: 33209104 Free PMC article. No abstract available.
-
Identifying indicator species in ecological habitats using Deep Optimal Feature Learning.PLoS One. 2021 Sep 10;16(9):e0256782. doi: 10.1371/journal.pone.0256782. eCollection 2021. PLoS One. 2021. PMID: 34506523 Free PMC article.
-
Decoding degeneration: the implementation of machine learning for clinical detection of neurodegenerative disorders.Neural Regen Res. 2023 Jun;18(6):1235-1242. doi: 10.4103/1673-5374.355982. Neural Regen Res. 2023. PMID: 36453399 Free PMC article. Review.
References
-
- Abadi M., Agarwal A., Barham P., Brevdo B., Chen Z., Citro C., Corrado G. S., Davis A., Dean J., Devin M., Ghemawat S., Goodfellow I., Harp A., Irving G., Isard M., Jia Y., Jozefowicz R., Kaiser L., Kudlur M., Levenberg J., Mané D., Monga R., Moore S., Murray D., Olah C., Schuster M., Shlens J., Steiner B., Sutskever I., Talwar K., Tucker P., Vanhoucke V., Vasudevan V., Viégas F., Vinyals O., Warden P., Wattenberg M., Wicke M., Yu Y. and Zheng X.. . TensorFlow: large-scale machine learning on heterogeneous systems. Software available from https://www.tensorflow.org/ (Nov. 2015).
-
- Duin R. Classifiers in almost empty spaces. In 15th International Conference on Pattern Recognition. Proceedings, vol. 2, pp. 1–7. Barcelona, Spain: IEEE; 2000. doi:10.1109/ICPR.2000.906006. - DOI
-
- Foster N. L., Heidebrink J. L., Clark C. M., Jagust W. J., Arnold S. E., Barbas N. R., DeCarli C. S., Turner R. S., Koeppe R. A., Higdon R. and Minoshima S... FDG-PET improves accuracy in distinguishing frontotemporal dementia and Alzheimer’s disease. Brain, 130, 2616–2635, 2007. doi:10.1093/brain/awm177. - DOI - PubMed
-
- Friston K. J., Ashburner J. T., Kiebel S. J., Nichols T. E. and Penny W. D.. Statistical Parametric Mapping: The Analysis of Functional Brain Images, 1st edn. Academic Press, Amsterdam, 2006.
-
- Friston K. and Stephan K.. Chapter 03 - Modelling brain responses. In Statistical Parametric Mapping, John Ashburner Karl Friston, Thomas Nichols Stefan Kiebel and William Penny, , pp. 32–45. Academic Press, London, 2007.
Grants and funding
LinkOut - more resources
Full Text Sources
Miscellaneous