Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Nov 26:24:34.
doi: 10.1186/s40409-018-0169-4. eCollection 2018.

Antivenomic approach of different Crotalus durissus collilineatus venoms

Affiliations

Antivenomic approach of different Crotalus durissus collilineatus venoms

Isadora Sousa de Oliveira et al. J Venom Anim Toxins Incl Trop Dis. .

Abstract

Background: Our group has previously performed a proteomic study verifying that individual variations can occur among Crotalus durissus collilineatus venoms. These variations may lead to differences in venom toxicity and may result in lack of neutralization of some components by antivenom. In this way, this study aimed to evaluate the Brazilian anticrotalic serum capacity in recognizing twenty-two Crotalus durissus collilineatus venoms, as well as their fractions.

Methods: The indirect enzyme-linked immunosorbent assay (ELISA) was chosen to evaluate the efficacy of heterologous anticrotalic serum produced by Instituto Butantan (Brazil) in recognizing the twenty-two Crotalus durissus collilineatus venoms and the pool of them. Moreover, the venom pool was fractionated using reversed-phase fast protein liquid chromatography (RP-FPLC) and the obtained fractions were analyzed concerning antivenom recognition.

Results: Evaluation of venom variability by ELISA showed that all venom samples were recognized by the Brazilian anticrotalic antivenom. However, some particular venom fractions were poorly recognized.

Conclusion: This study demonstrated that the Brazilian anticrotalic serum recognizes all the different twenty-two venoms of C. d. collilineatus and their fractions, although in a quantitatively different way, which may impact the effectiveness of the antivenom therapy. These results confirm the need to use a pool of venoms with the greatest possible variability in the preparation of antivenoms, in order to improve their effectiveness.

Keywords: Antivenomic; Crotalic antivenom; Crotalus durissus collilineatus; Individual variation; Snake venoms.

PubMed Disclaimer

Conflict of interest statement

Not applicable.Not applicable.The authors declare that they have no competing interests.Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Antivenom recognition of C. d. collilineatus venoms and fractions performed by indirect enzyme-linked immunosorbent assay (ELISA) and chromatographic profiles of pooled venom. The 96-well plates were sensitized with 2 μg of (a) venoms (1–22) and (c) RP-FPLC fractions (0–44) diluted to 100 μL with carbonate-bicarbonate buffer (pH 9.6). The commercial anticrotalic serum (1,100) from Instituto Butantan was used to evaluate its capacity to recognize the venoms and their fractions using antihorse polyclonal antibodies peroxidase-labeled (1,3000) as secondary antibody. Positive control (C+): wells sensitized with anticrotalic antivenom (represented by horizontal dashed lines). Negative control (C-): non-sensitized wells. Absorbance reading was performed at 490 nm. Data are presented as mean ± SD, which were analyzed by ANOVA and Tukey’s multiple comparison test (quadruplicate assay). *p < 0.05, **p < 0.01 and ***p < 0.001 compared to C-; #p < 0.05, ##p < 0.01 and ###p < 0.001 compared to C+. The arrow indicates crotamine-positive venom and fractions. (b) RP-FPLC of C. d. collilineatus pooled venom (22 mg) on a C18 column was carried out in a segmented concentration gradient from 6.3 to 100% of solution B (80% ACN in 0.1% TFA, represented by the blue dashed line) at a flow rate of 5 mL/min. Inset panel – whole chromatographic profile without magnification
Fig. 2
Fig. 2
Densitometric analyses of the SDS-PAGE profiles of RP-FPLC fractions. (a) Fraction 0, (b) Fraction 19, (c) Fractions 21 and 22, (d) Fractions 35, 36, 37 and 39 and (e) Fraction 42. MW: molecular weight. Absorbance at 302 nm and the graphic created by software Image Lab™, version 5.2.1 (Bio-Rad Laboratories, Inc., California, USA)

Similar articles

Cited by

References

    1. Cruz LS, Vargas R, Lopes AA. Snakebite envenomation and death in the developing world. Ethn Dis. 2009;19(1 Suppl) S1-42-6. - PubMed
    1. Calvete JJ, Rodríguez Y, Quesada-Bernat S, Pla D. Toxin-resolved antivenomics-guided assessment of the immunorecognition landscape of antivenoms. Toxicon. 2018;148:107–122. doi: 10.1016/j.toxicon.2018.04.015. - DOI - PubMed
    1. Gutiérrez JM, Pereañez JA. The need for an integrated approach in confronting snakebite envenoming in Latin America: the relevance of endogenous scientific and technological research. Vitae. 2016;23(2):103–105. doi: 10.17533/udea.vitae.v23n2a01. - DOI
    1. World Health Organization . Rabies and envenomings: a neglected public health issue: report of a consultative meeting. Geneva: World Health Organization; 2007.
    1. Chippaux JP. Snakebite envenomation turns again into a neglected tropical disease! J Venom Anim Toxins incl Trop Dis. 2017;23:38. doi: 10.1186/s40409-017-0127-6. - DOI - PMC - PubMed

LinkOut - more resources