Molecular evolution and transcriptional profile of GH3 and GH20 β-N-acetylglucosaminidases in the entomopathogenic fungus Metarhizium anisopliae
- PMID: 30534852
- PMCID: PMC6415606
- DOI: 10.1590/1678-4685-GMB-2017-0363
Molecular evolution and transcriptional profile of GH3 and GH20 β-N-acetylglucosaminidases in the entomopathogenic fungus Metarhizium anisopliae
Erratum in
-
Erratum: Molecular evolution and transcriptional profile of GH3 and GH20 β-N-acetylglucosaminidases in the entomopathogenic fungus.Genet Mol Biol. 2019 Feb 28;42(1):151. doi: 10.1590/1678-4685-gmb-2017-0363er. Online ahead of print. Genet Mol Biol. 2019. PMID: 30816907 Free PMC article. No abstract available.
Abstract
Cell walls are involved in manifold aspects of fungi maintenance. For several fungi, chitin synthesis, degradation and recycling are essential processes required for cell wall biogenesis; notably, the activity of β-N-acetylglucosaminidases (NAGases) must be present for chitin utilization. For entomopathogenic fungi, such as Metarhizium anisopliae, chitin degradation is also used to breach the host cuticle during infection. In view of the putative role of NAGases as virulence factors, this study explored the transcriptional profile and evolution of putative GH20 NAGases (MaNAG1 and MaNAG2) and GH3 NAGases (MaNAG3 and MaNAG4) identified in M. anisopliae. While MaNAG2 orthologs are conserved in several ascomycetes, MaNAG1 clusters only with Aspergilllus sp. and entomopathogenic fungal species. By contrast, MaNAG3 and MaNAG4 were phylogenetically related with bacterial GH3 NAGases. The transcriptional profiles of M. anisopliae NAGase genes were evaluated in seven culture conditions showing no common regulatory patterns, suggesting that these enzymes may have specific roles during the Metarhizium life cycle. Moreover, the expression of MaNAG3 and MaNAG4 regulated by chitinous substrates is the first evidence of the involvement of putative GH3 NAGases in physiological cell processes in entomopathogens, indicating their potential influence on cell differentiation during the M. anisopliae life cycle.
Figures




Similar articles
-
[Characterization of proteo-, chitino- and lipolytic enzymes of parasitic fungus Conidiobolus coronatus].Wiad Parazytol. 2010;56(1):83-5. Wiad Parazytol. 2010. PMID: 20450015 Polish.
-
Genomic analyses and transcriptional profiles of the glycoside hydrolase family 18 genes of the entomopathogenic fungus Metarhizium anisopliae.PLoS One. 2014 Sep 18;9(9):e107864. doi: 10.1371/journal.pone.0107864. eCollection 2014. PLoS One. 2014. PMID: 25232743 Free PMC article.
-
Secondary metabolite gene clusters in the entomopathogen fungus Metarhizium anisopliae: genome identification and patterns of expression in a cuticle infection model.BMC Genomics. 2016 Oct 25;17(Suppl 8):736. doi: 10.1186/s12864-016-3067-6. BMC Genomics. 2016. PMID: 27801295 Free PMC article.
-
Cuticle degrading proteases from insect moulting fluid and culture filtrates of entomopathogenic fungi.Comp Biochem Physiol B Biochem Mol Biol. 1995 Apr;110(4):661-9. doi: 10.1016/0305-0491(94)00205-9. Comp Biochem Physiol B Biochem Mol Biol. 1995. PMID: 7749618 Review.
-
Metarhizium anisopliae enzymes and toxins.Toxicon. 2010 Dec 15;56(7):1267-74. doi: 10.1016/j.toxicon.2010.03.008. Epub 2010 Mar 16. Toxicon. 2010. PMID: 20298710 Review.
Cited by
-
Chitinolytic Enzymes of the Hyperparasite Fungus Aphanocladium album: Genome-Wide Survey and Characterization of A Selected Enzyme.Microorganisms. 2023 May 22;11(5):1357. doi: 10.3390/microorganisms11051357. Microorganisms. 2023. PMID: 37317333 Free PMC article.
-
Genome-wide DNA methylation analysis of Metarhizium anisopliae during tick mimicked infection condition.BMC Genomics. 2019 Nov 11;20(1):836. doi: 10.1186/s12864-019-6220-1. BMC Genomics. 2019. PMID: 31711419 Free PMC article.
-
Phylogenomics of a new fungal phylum reveals multiple waves of reductive evolution across Holomycota.Nat Commun. 2021 Aug 17;12(1):4973. doi: 10.1038/s41467-021-25308-w. Nat Commun. 2021. PMID: 34404788 Free PMC article.
-
Lessons on fruiting body morphogenesis from genomes and transcriptomes of Agaricomycetes.Stud Mycol. 2023 Jul;104:1-85. doi: 10.3114/sim.2022.104.01. Epub 2023 Jan 31. Stud Mycol. 2023. PMID: 37351542 Free PMC article.
-
High-Level Extracellular Expression of a New β-N-Acetylglucosaminidase in Escherichia coli for Producing GlcNAc.Front Microbiol. 2021 Mar 11;12:648373. doi: 10.3389/fmicb.2021.648373. eCollection 2021. Front Microbiol. 2021. PMID: 33776979 Free PMC article.
References
-
- Adamek L. Submerse cultivation of the fungus Metarhizium anisopliae (Metsch.) Folia Microbiol (Praha) 1965;10:255–257. - PubMed
-
- Alcazar-Fuoli L, Clavaud C, Lamarre C, Aimanianda V, Seidl-Seiboth V, Mellado E, Latgé JP. Functional analysis of the fungal/plant class chitinase family in Aspergillus fumigatus . Fungal Genet Biol. 2011;48:418–429. - PubMed
-
- Andersen CL, Jensen JL, Ørntoft TF. Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res. 2004;64:5245–5250. - PubMed
-
- Anisimova M, Gascuel O. Approximate likelihood-ratio test for branches: A Fast, accurate, and powerful alternative. Syst Biol. 2006;55:539–552. - PubMed
LinkOut - more resources
Full Text Sources