Comparative Transcriptome Analysis between Fertile and CMS Flower Buds in Wucai (Brassica campestris L.)
- PMID: 30541424
- PMCID: PMC6292171
- DOI: 10.1186/s12864-018-5331-4
Comparative Transcriptome Analysis between Fertile and CMS Flower Buds in Wucai (Brassica campestris L.)
Abstract
Background: Wucai (Brassica campestris L. ssp. chinensis var. rosularis Tsen) is a variant of nonheading Chinese cabbage (Brassica campestris L.), which is one of the major vegetables in China. Cytoplasmic male sterility (CMS) has been used for Wucai breeding in recent years. However, the underlying molecular mechanism of Wucai CMS remains unclear. In this study, the phenotypic and cytological features of Wucai CMS were observed by anatomical analysis, and a comparative transcriptome analysis was carried out to identify genes related to male sterility using Illumina RNA sequencing technology (RNA-Seq).
Results: Microscopic observation demonstrated that tapetum development was abnormal in the CMS line, which failed to produce fertile pollen. Bioinformatics analysis detected 4430 differentially expressed genes (DEGs) between the fertile and sterile flower buds. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed to better understand the functions of these DEGs. Among the DEGs, 35 genes (53 DEGS) were implicated in anther and pollen development, and 11 genes were involved in pollen cell wall formation and modification; most of these showed downregulated expression in sterile buds. In addition, several genes related to tapetum development (A6, AMS, MS1, MYB39, and TSM1) and a few genes annotated to flowering (CO, AP3, VIN3, FLC, FT, and AGL) were detected and confirmed by qRT-PCR as being expressed at the meiosis, tetrad, and uninucleate microspore stages, thus implying possible roles in specifying or determining the fate and development of the tapetum, male gametophyte and stamen. Moreover, the top four largest transcription factor families (MYB, bHLH, NAC and WRKY) were analyzed, and most showed reduced expression in sterile buds. These differentially expressed transcription factors might result in abortion of pollen development in Wucai.
Conclusion: The present comparative transcriptome analysis suggested that many key genes and transcription factors involved in anther development show reduced gene expression patterns in the CMS line, which might contribute to male sterility in Wucai. This study provides valuable information for a better understanding of CMS molecular mechanisms and functional genome studies in Wucai.
Keywords: Cytoplasmic male sterility; Differentially expressed genes; RNA-Seq; Tapetum; Transcriptome analysis; Wucai.
Conflict of interest statement
Ethics approval and consent to participate
Not applicable.
Consent for publication
Not applicable.
Competing interests
The authors declare that they have no competing interests.
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Figures







References
-
- Zou M, Yuan L, Zhu S, Liu S, Ge J, Wang C. Response of osmotic adjustment and ascorbate-glutathione cycle to heat stress in a heat-sensitive and a heat-tolerant genotype of wucai (Brassica campestris L.) Sci Horic. 2016;211:87–94.
-
- Chen G, Zhang S, Yuan L, Zhu S, Liu S, Zhang H, Wang C. Establishment of effective regeneration system of Wucai in vitro. Mol Plant Breed. 2017;15(4):1466–1472.
-
- Yuan L, Zhu S, Liu S, Chen G, Zou M, Ge J, Wang C. A new male sterility savoy hybrid 'Huiwu 11′. Acta Hortic Sin. 2016;43(7):1423–1424.
-
- Zhou X, Liu Z, Ji R, Feng H. Comparative transcript profiling of fertile and sterile flower buds from multiple-allele-inherited male sterility in Chinese cabbage (Brassica campestris L. ssp. pekinensis) Mol Gen Genomics. 2017;292:967–990. - PubMed
MeSH terms
Substances
Grants and funding
- 2017YFD0101803/National Key R & D Program of China
- 17030701013/Provincial Science and Technology Major Project of Anhui
- KJ2017ZD15/Major Projects of Natural Science Research Funds in Support of Colleges
- KJ2017A153/Key Projects of Natural Science Research Funds in Support of Colleges
- 31701910/National Natural Science Foundation of China