Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Dec 12;18(1):233.
doi: 10.1186/s12872-018-0975-1.

Relationship between plaque composition by virtual histology intravascular ultrasound and clinical outcomes after percutaneous coronary intervention in saphenous vein graft disease patients: study protocol of a prospective cohort study

Affiliations

Relationship between plaque composition by virtual histology intravascular ultrasound and clinical outcomes after percutaneous coronary intervention in saphenous vein graft disease patients: study protocol of a prospective cohort study

Yin Liu et al. BMC Cardiovasc Disord. .

Abstract

Background: Plaque composition and morphologic characteristics identified by virtual histology intravascular ultrasound (VH-IVUS) can determine plaques at increased risk of clinical events following percutaneous coronary intervention (PCI) among coronary artery disease (CAD) patients. However, there have been few studies to investigate the relationship between plaque composition of saphenous vein graft (SVG) by VH-IVUS and clinical outcomes in patients with saphenous vein graft disease (SVGD) undergoing PCI. The purpose of this study is to determine whether plaque components and characteristics by VH-IVUS can predict major adverse cardiac events (MACEs) among SVGD patients undergoing PCI.

Methods/design: This is a prospective cohort study conducted in Tianjin Chest Hospital, China. Participants with SVGD referred for PCI will be invited to participate in this study, and will be followed up at 1, 6, 12, 24 and 36 months post-PCI to assess clinical outcomes. The planned sample size is 175 subjects. We will recruit subjects with SVGD scheduled to receive PCI, aged 18-80 years, with a history of previous coronary artery bypass graft (CABG) surgery more than 1 year ago, and willing to participate in the study and sign informed consent. The composite primary study endpoint is the incidence of MACEs after PCI for SVGD, including death from cardiac causes, non-fatal myocardial infarction, unplanned target lesion revascularization (TLR) and target vessel revascularization (TVR). The primary outcome analysis will be presented as Kaplan-Meier estimates and the primary outcome analysis will be carried out using a Cox proportional hazards regression model.

Discussion: Once the predictive values of plaque components and characteristics by VH-IVUS on subsequent clinical outcomes are determined among SVGD patients undergoing PCI, an innovative prediction tool of clinical outcomes for SVGD patients undergoing PCI will be created, which may lead to the development of new methods of risk stratification and intervention guidance.

Trial registration: The study is registered to ClinicalTrials.gov (NCT03175952).

Keywords: Major adverse cardiac events; Percutaneous coronary intervention; Saphenous vein graft disease; Virtual histology intravascular ultrasound.

PubMed Disclaimer

Conflict of interest statement

Ethics approval and consent to participate

The study protocol has been approved by the Institutional Review Boards of Tianjin Chest Hospital and the study will be conducted in accordance with Declaration of Helsinki. Written informed consent is signed by all the participants. The study is also registered at www.clinicaltrials.gov (NCT03175952) on June 5, 2017.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Study flow chart

Similar articles

References

    1. Parang P, Arora R. Coronary vein graft disease: pathogenesis and prevention. Can J Cardiol. 2009;25(2):e57–e62. doi: 10.1016/S0828-282X(09)70486-6. - DOI - PMC - PubMed
    1. Yayla C, Canpolat U, Akyel A, Yayla KG, Yilmaz S, Acikgoz SK, Ozcan F, Turak O, Dogan M, Yeter E, et al. Association between platelet to lymphocyte ratio and saphenous vein graft disease. Angiology. 2016;67(2):133–138. doi: 10.1177/0003319715578258. - DOI - PubMed
    1. Gaudino M, Puskas JD, Di Franco A, Ohmes LB, Iannaccone M, Barbero U, Glineur D, Grau JB, Benedetto U, D'Ascenzo F, et al. Three arterial grafts improve late survival: a meta-analysis of propensity-matched studies. Circulation. 2017;135(11):1036–1044. doi: 10.1161/CIRCULATIONAHA.116.025453. - DOI - PubMed
    1. Owens CD. Adaptive changes in autogenous vein grafts for arterial reconstruction: clinical implications. J Vasc Surg. 2010;51(3):736–746. doi: 10.1016/j.jvs.2009.07.102. - DOI - PMC - PubMed
    1. Barbero U, Iannaccone M, d’Ascenzo F, Barbero C, Mohamed A, Annone U, Benedetto S, Celentani D, Gagliardi M, Moretti C, et al. 64 slice-coronary computed tomography sensitivity and specificity in the evaluation of coronary artery bypass graft stenosis: a meta-analysis. Int J Cardiol. 2016;216:52–57. doi: 10.1016/j.ijcard.2016.04.156. - DOI - PubMed

Publication types

MeSH terms

Associated data