Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2018 Dec 12;475(23):3903-3915.
doi: 10.1042/BCJ20180477.

On mechanisms of colicin import: the outer membrane quandary

Affiliations
Review

On mechanisms of colicin import: the outer membrane quandary

William A Cramer et al. Biochem J. .

Abstract

Current problems in the understanding of colicin import across the Escherichia coli outer membrane (OM), involving a range of cytotoxic mechanisms, are discussed: (I) Crystal structure analysis of colicin E3 (RNAase) with bound OM vitamin B12 receptor, BtuB, and of the N-terminal translocation (T) domain of E3 and E9 (DNAase) inserted into the OM OmpF porin, provide details of the initial interaction of the colicin central receptor (R)- and N-terminal T-domain with OM receptors/translocators. (II) Features of the translocon include: (a) high-affinity (Kd ≈ 10-9 M) binding of the E3 receptor-binding R-domain E3 to BtuB; (b) insertion of disordered colicin N-terminal domain into the OmpF trimer; (c) binding of the N-terminus, documented for colicin E9, to the TolB protein on the periplasmic side of OmpF. Reinsertion of the colicin N-terminus into the second of the three pores in OmpF implies a colicin anchor site on the periplasmic side of OmpF. (III) Studies on the insertion of nuclease colicins into the cytoplasmic compartment imply that translocation proceeds via the C-terminal catalytic domain, proposed here to insert through the unoccupied third pore of the OmpF trimer, consistent with in vitro occlusion of OmpF channels by the isolated E3 C-terminal domain. (IV) Discussion of channel-forming colicins focuses mainly on colicin E1 for which BtuB is receptor and the OM TolC protein the proposed translocator. The ability of TolC, part of a multidrug efflux pump, for which there is no precedent for an import function, to provide a trans-periplasmic import pathway for colicin E1, is questioned on the basis of an unfavorable hairpin conformation of colicin N-terminal peptides inserted into TolC.

Keywords: E. coli; colicin; outer membrane.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources