Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Sep 6;9(42):8150-8159.
doi: 10.1039/c8sc03499k. eCollection 2018 Nov 14.

Structure-switching M3L2 Ir(iii) coordination cages with photo-isomerising azo-aromatic linkers

Affiliations

Structure-switching M3L2 Ir(iii) coordination cages with photo-isomerising azo-aromatic linkers

Samuel Oldknow et al. Chem Sci. .

Abstract

Cyclotriguaiacylene has been functionalised with 3- or 4-pyridyl-azo-phenyl groups to form a series of molecular hosts with three azobenzene-type groups that exhibit reversible photo-isomerisation. Reaction of the host molecules with [Ir(C^N)2(NCMe)2]+ where C^N is the cyclometallating 2-phenylpyridinato, 2-(4-methylphenyl)pyridinato or 2-(4,5,6-trifluorophenyl)pyridinato results in the self-assembly of a family of five different [{Ir(C^N)2}3(L)2]3+ coordination cages. Photo-irradiation of each of the cages with a high energy laser results in EZ photo-isomerisation of the pyridyl-azo-phenyl groups with up to 40% of groups isomerising. Isomerisation can be reversed by exposure to blue light. Thus, the cages show reversible structure-switching while maintaining their compositional integrity. This represents the largest photo-induced structural change yet reported for a structurally-integral component of a coordination cage. Energy minimised molecular models indicate a switched cage has a smaller internal space than the initial all-E isomer. The [Ir(C^N)2(NCMe)2]+ cages are weakly emissive, each with a deep blue luminescence at ca. 450 nm.

PubMed Disclaimer

Figures

Scheme 1
Scheme 1. Synthesis of (a) ester-linked ligands L1 and L2; (b) glycol-linked ligands L3 and L4.
Fig. 1
Fig. 1. From the crystal structures of (a) L2 (some disorder not shown, see Fig. S3†); (b) L3·2(MeNO2).
Fig. 2
Fig. 2. 1H NMR spectra (300 MHz) in CD2Cl2. (a) Ligand L2 and (b) ligand L4 showing in each case (i) initial spectrum, (ii) after irradiation with 355 nm laser to Z-rich form; (iii) after irradiation with 450 nm light to return to E state. Red asterix indicates CTG–CH2– proton and blue circle indicates aromatic proton shielded in Z-isomer.
Fig. 3
Fig. 3. UV-visible spectra of L2 in CHCl3 (30 μM), blue trace initial spectrum, red trace after irradiation with 355 nm laser to photo-stationary state.
Scheme 2
Scheme 2. Synthesis of [{Ir(C^N)2}3(L)2]·3PF6 coordination cages.
Fig. 4
Fig. 4. ESI-MS of [{Ir(ppy)2}3(L2)2]·3PF6C1 after 24 h equilibration. Inset shows (a) experimental and (b) calculated isotope pattern for [{Ir(ppy)2}3(L2)2]3+.
Fig. 5
Fig. 5. Interpreted 1H NMR of C1 in CD3NO2 with numbering scheme. (a) 1H spectra (300 MHz) of (i) ligand L2; (ii) precursor [Ir(ppy)2(NCMe)2]·2PF6; (iii) [{Ir(ppy)2}3(L2)2]·3PF6C1 after overnight equilibration. (b) Section of 1H DOSY spectra (600 MHz) of C1.
Fig. 6
Fig. 6. Energy-minimized structure of [{Ir(ppy)2}3(L2)2]3+.
Fig. 7
Fig. 7. UV-visible spectra showing EZ photo-isomerization of cages in DCM solution indicated by reduction in intensity of π → π* absorption on step-wise irradiation with 355 nm Nd:YAG laser, and insets showing expansion of n → π* transition increasing in intensity with isomerisation. Each sample was irradiated in steps to a photo-stationary state where further irradiation did not produce more spectral changes. (a) Cage C1 with total irradiation time 255 s; (b) cage C1-Me with total 967 s irradiation; (c) cage C1-F irradiated for total 767 s; (d) cage 3 irradiated for a total of 499 s. Black line is initial spectrum, grey lines spectra on subsequent irradiations.
Fig. 8
Fig. 8. (a) 1H NMR (300 MHZ, CD2Cl2) of (i) initial C1-F; (ii) after irradiation with 355 nm laser for 200 s; (iii) after re-irradiation with 450 nm Xe lamp for 40 min. (b) ESI-MS of solution taken at conditions (ii).
Fig. 9
Fig. 9. Energy-minimised models of [{Ir(ppy)2}3(L2)2]3+ with differing numbers of Z-isomer ligand arms. Hydrogens excluded for clarity.
Fig. 10
Fig. 10. Normalized photoluminescence spectra of coordination cages in deaerated DCM solution. Inset shows darkroom images of emission of C1-Me in DCM (upper) and in PMMA matrix (lower).

Similar articles

Cited by

References

    1. Reviews: Chen L.-J., Yang H.-B., Shionoya M., Chem. Soc. Rev., 2017, 46 , 2555 Bloch W. M., Clever G. H., Chem. Commun., 2017, 53 , 8506, D Ward M., Hunter C. A., Williams N. H., Chem. Lett., 2017, 46 , 2, Vasdev R. A. S., Preston D., Crowley J. D., Chem.–Asian J., 2017, 12 , 2513, Henkelis J. J., Hardie M. J., Chem. Commun., 2015, 51 , 11929, Zarra S., Wood D. M., Roberts D. A., Nitschke J. R., Chem. Soc. Rev., 2015, 44 , 419, Cook T. R., Zheng Y.-R., Stang P. J., Chem. Rev., 2013, 113 , 734, Chakrabarty R., Mukherjee P. S., Stang P. J., Chem. Rev., 2011, 111 , 6810, Harris K., Fujita D., Fujita M., Chem. Commun., 2013, 49 , 6703, Jin P., Dalgarno S. J., Atwood J. L., Coord. Chem. Rev., 2010, 254 , 1760, Ward M. D., Chem. Commun., 2009. , 4487, Yoshizawa M., Klosterman J. K., Fujita M., Angew. Chem., Int. Ed., 2009, 48 , 3418, Fiedler D., Leung D. H., Bergman R. G., Raymond K. N., Acc. Chem. Res., 2005, 38 , 349 . - PubMed
    1. McConnell A. J., Wood C. S., Neelakandan P. P., Nitschke J. R. Chem. Rev. 2015;115:7729. - PubMed
    1. Han M., Michel R., He B., Chen Y.-S., Stalke D., John M., Clever G. H. Angew. Chem., Int. Ed. 2013;52:1319. - PubMed
    1. Han M., Luo Y., Damaschke B., Gómez L., Ribas X., Jose A., Peretzki P., Seibt M., Clever G. H. Angew. Chem., Int. Ed. 2016;55:445. - PubMed
    1. Bandara H. M. D., Burdette S. C. Chem. Soc. Rev. 2012;41:1809. - PubMed